
AD-A246 083 -

NAVAL POSTGr:ADUATE SCHOOL
Monrter-ey, Califorrnia

DTIC
ELECTE fif
FEB 20 1992

SOFTWARE AND THE VIRUS THREAT:
PROVIDING AUTHENTICITY IN DISTRIBUTION

by

LT George M. LaVenture, USN

March 1991

Thesis Advisor: Dr. Norman F. Schneidewind

Approved for public release; distribution is unlimited.

92-03881102 2 14 0 2o 0,HBillllf~l~~

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I a. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. ECLSSIICAIONDOWNRADNG CHEULEApproved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (if applica ble) Naval Postgraduate School

_______________________________ 1 55

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (CiO, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J(if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10- SOURCE OF FUNDING NUMBERS
Program Element No. Project No.I Tral No. Work Unit AccesuOi

11. TITLE (Include Security Classification)
SOFTWARE A"D THE VIRUS THREAT: PROVIDING AUTHENTICITY IN DISTRIBUTION

12. PERSONAL AUTHOR(S)
LAVUNTURE, GEORGE M.

13&. TYPE OF REPORT 1 3b. TIME COVERED 14. DATE OF REPORT (year, monh, day) 15. PAGE COUNT
MasterThma I From TO March 1991 82
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD I GROUP I SUBGROUP IComputer Viruses, Virus Prevention,
Computer Security, Digital Signatures

19. ABSTRACT (continue on reverse if necessary and kidentify by block number)

Computer viruses have threatened the integrity and reliability of computer systems
since 1983. Literally hundreds of viruses exist for the IBM1 compatible computer alone. These
viruses can cause corruption or loss of program and data files, incidental damage to
hardware, and degradation or lose of system performance.

This paper examines the nature of the virus threat by discussing virus types, methods
and rates of propagation, relative frequiencies of occurrence, and genealogy.

Possible methods for virus detection and identification, followed by disinfection,
are outlined. Minimum capabilities and testing criteria for these products are also detailed.

Methods for controlling and limiting infection and damage are discussed. These are
considered minimim acceptable safeguards to be implemented by an organization.

Lastly, software authentication means are examined, which, when used in conjunction
with the minimum safeguards, would eliminate the possibility of viral infection.

20. DIST3"UTION/AVAILAILITY OF ABSTRACT 2 1. ABSTPACTSECt4$1. CLASSIFICATION
U0XNCASSWIEOIUNUJMIIEO 1AM! AS ftPA0T 13 OTIc U a

22a N4A'#E ORELPQN;I3L ADI(qU~.ZbTIftOE~jdeAe oe 22c. OFFICE SYMBOL
r .o!7n.cneuwn (408) 64 -ti19 AS-SS

DO FORM 1473.84 MAN 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Approved for public release; distribution is unlimited.

Software and the Virus Threat:

Providing Authenticity In Distribution

by

George M. LaVenture

Lieutenant, United States Navy

B.S., 1981 Syracuse University

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SYSTEMS MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

Marc 1 1

Author:__ _ _ _ _ _ _ __ _ _

LT Geo ge M. LaVenture, USN

Approved by: _ _ _ _ _ __ _ _ _ _ _

Dr. Norman F. Schneidewind

Thesis Advisor

Mr. John W. Mildner

Second Reader

Dr. David R. Whippl
Chairman, Department of Adminitratie Science

ABSTRACT

Computer viruses have threatened the integrity and reliability of

computer systems since 1983. Literally hundreds of viruses exist for the

IBM compatible computer alone. These viruses can cause corruption or loss

of program and data files, incidental damage to hardware, and degradation

or loss of system performance.

This paper examines the nature of the virus threat by discussing

virus types, methods and rates of propagation, relative frequencies of

occurrence, and genealogy.

Possible methods for virus detection and identification, followed by

disinfection, are outlined. Minimum capabilities and testing criteria for

these products are also detailed.

Methods for controlling and limiting infection and damage are

discussed. These are considered minimum acceptable safeguards to be

implemented by an organization.

Lastly, software authentication means are examined, which, when used

in conjunction with the minimum safeguards, would eliminate the possibility

of viral infection.
Accesion For

NTIS CRA&I
OTiC TAB fl
U,'a;, oolced LI

By....

B y

Di t ibutio .

l Av1: l.IIot
Dist

Iii

, . .. ,.,., ,,. mm * mmzmmmm Imlllllmm mm I • ! I |

TABLE OF CONTENTS

1. INTRODUCTION 1

A. BACKGROUND 1

B. SOFTWARE CATEGORIES 2

C. MICROCOMPUTER RELIABILITY 3

II. NATURE OF THE VIRUS THREAT 5

A. NAME ORIGIN 5

B. TYPES OF VIRUSES 5

i. Boot Infectors 6

2. System Infectors 7

3. Executable Program Infectors 7

C. PROPAGATION ESTIMATES 9

D. RELATIVE FREQUENCY 11

E. VIRAL GENEALOGY 13

III. VIRUS IDENTIFICATION AND REMOVAL 15

A. IDENTIFICATION 15

1. Infection Preventors 16

2. Infection Detectors 17

3. Infection Identifiers 18

B. REMOVAL 19

1. Virus Specific Disinfectors 20

iv

2. Universal Disinfectors 20

IV. VIRUS INFECTION PREVENTION METHODS 24

A. USER TRAINING 24

1. Basic Precautions 24

2. Virus Recognition 25

B. HARDWARE MEASURES 26

1. Write Protect Tabs 26

2. Tamper-proof Shrinkwrap 27

3. CD ROM 27

C. SOFTWARE MEASURES 28

1. Virus Scanners 28

2. Authentication Methods 28

V. AUTHENTICATION METHODS 31

A. CHECKSUMS 32

B. CYCLIC REDUNDANCY CODES 32

C. ENCRYPTION 34

1. Cryptographic Systems 36

2. Reasons for Cryptography 37

a. Secrecy 37

b. Authenticity 37

3. Types of Cryptosystems 38

a. Symmetric Cryptosystems 38

b. Asymmetric Cryptosystems 38

D. MESSAGE AUTHENTICATION CODES 39

v

1. Public Key Cryptosystens 39

a. Providing Secrecy. 40

b. Providing Authentication. 40

c. Secrecy with Authentication 40

2. Message Digests. 41

a. Hash Functions 41

b. The RSA Signature Scheme. 42

E. HYBRID SYSTEMS 43

VI. PRACTICAL SOFTWARE AUTHENTICATION. 45

A. MD4. 45

B. SIGN AND CHECK. 46

C. VIRUS-SAFE. 46

VII. CONCLUSIONS AND RECOMMENDATIONS. 48

A. CONFIDENCE BUILDING. 48

1. User Training. 49

2. Virus Detection and Removal 49

B. ASSURANCE BUILDING 50

1. Software Authentication 50

C. THE BOTTOM LINE 52

VIII. APPENDICES. 54

A. EXAMPLES OF DOS VIRAL INFECTION IN THE US 54

B. CHRONOLOGY OF A VIRUS AS TOLD BY IT'S AUTHOR 55

C. KNOWN VIRUS INFECTION AND DAMAGE CHARACTERISTICS . 56

vi

D. ANTI-VIRAL PRODUCT MINIMUM CAPABILITIES LIST 60

1. Infection Prevention Products 60

2. Infection Detection Products 60

3. Infection Identification Products 61

E. ANTI-VIRAL PRODUCT EVALUATION PROCEDURES 62

1. Infection Prevention Products 62

2. Infection Detection Products 63

3. Infection Identification Products 63

F. ANTI-VIRAL SOFTWARE 65

1. Infection Prevention Systems 65

2. Infection Detection Systems 65

3. Infection Identification Systems 65

G. MD4 LISTING 66

IX. LIST OF REFERENCES 71

INITIAL DISTRIBUTION LIST 73

vii

ACKNOWLEDGEMENT

I would like to give special thanks to the following individuals who

spent their time discussing the subject with me.

Mr. Mike McLaughlin Navy Information Resources Management
Ms. Judith Froscher Naval Research Laboratory

Mr. Bruce Calkins National Computer Security Center
Mr. Bruce Coster National Computer Security Center

Dr. Dennis Branstad National Institute of Science and Technology
Mr. John Wick National Institute of Science and Technology

Thanks to Mr. Kenneth Van Wyk, moderator of the VIRUS DISCUSSION

LIST, for sending me his excellent product.

Very special thanks to my advisor, Dr. Norman F. Schneidewind, at the

Naval Postgraduate School, Monterey, CA, and my second reader, Mr. John

Mildner, at the Naval Electronic Systems Security Engineering Center,

Washington, DC, for their patience and efforts to help me complete this

research project.

This research was supported, in part, by the Naval Electronic Systems

Security Engineering Center, Washington, DC.

viii

I. INTRODUCTION

A. BACKGROUND

Since the first infectious and destructive computer virus was created

in November 19831, and the first microcomputer virus in January 19862,the

computer security field has never been the same. Computer viruses have

received wide reporting in both trade journals and the general press. Viral

code written in Asia could be "exported", via modem or mail, around the

world. Systems could be infected quicker than warnings could be received

and precautions taken. 5 The recent, and much publicized, UNIX Worm and

AIDS Trojan incidents are but two examples of the damage malicious code

can do.

I While conducting Doctoral Thesis research at the University of
Southern California in 1983 and 1984, Fred Cohen developed the first
computer virus and conducted propagation experiments on a VAX computer
with a UNIX operating system.

2 The virus, later named Pakistani Brain, originated in Lahore,
Pakistan. It was developed by two brothers purportedly as a copy
protection scheme for software they sold in their store. The original
version of this virus has their names and telh phone number programmed
in the code.

For comparison, the IBM PC was announced in 1980 and went on sale
October 1981.

The Pakistani Brain spread rapidly to North American via Europe.
In less than twelve months it had infected nearly a half-million computers
in hundreds of universities, corporations and government agencies.

I Cohen conducted five trial runs in which his virus never took more
than an hour to infect the VAX system. The shortest time to full infection
was five minutes, the average half an hour. His work was so successful
that university officials refused to allow further experiments.

The Department of the Navy (DON), in its drive toward technological

sophistication, is becoming increasingly computer dependant. Ships are

receiving administrative microcomputers and "smart" weapons systems while

shore establishments have their management information systems

interconnected by wide and local area networks (WANS and LANS). This

dependency and interconnection increases the potential of viral infection

and the threat of data compromise and degradation or loss of system

performance. Regardless of the source, a campus prankster or a foreign

power, protecting our systems from viruses will be essential to ensure

their reliability.

B. SOFTWARE CATEGORIES

Software used by DOD can be broadly categorized as either n, sion

critical or mission support. Mission critical software directly impacts on

DOD's ability to defend the United States from attack. Such software would

include missile guidance systems and military forces command and cor -ol

programs. Mission support software, all other DOD software not directly

effecting the defense of the United States, would include payroll packag-s,

personnel databases, and office automation.

D elopment of mission critical software often requires access to

classified hardware design and performance specifications. Depending upon

classification, special storage and development facilities, access procedures,

and testing criteria may be employed. Additionally, the fielding of hardware

and software systems would most probably be performed through a secure

distribution channel.

2

Mission support software development will, in general, require access

to unclassified, or at most, unclassified but sensitive data. Many of the

restrictions for classified projects may not apply. Distribution of hardware

and software will be through the Central Design Agent (CDA), the standard

supply system or via open purchase. Unfortunately, this increases the

vulnerability of our systems since the relative percentage of word

processors procured by the Navy exceeds the number of missile guidance

programs.

Due to the comparatively open nature of development, the relative

percentages of procurement, and the underlying simplicity of the custody

chain, I chose to examine viral protection of mission support software.

C. MICROCOMPUTER RELIABILITY

The IBM compatible microcomputer's popularity, widespread availability,

and general lack of security has made it the target of most viral attacks

in the last five years. The threat has become so wide-spread that Allstate

Insurance Company now offers virus insurance. Its home and business

insurance policies have been extended to cover viral damage to

microcomputers. (Skulason, 1990, #3-35) These are the same systems which

have been used aggressively for office automation, command LANs, and

access to sensitive command and control systems such as the Worldwide

Military Command and Control System (WWMCCS).

I The Computer Security Act of 1987, signed into law 8 January 1988,

created this category of information. It includes privacy act and contract
sensitive data.

3

With this in mind, I will focus on mission support soitware for IBM

compatible hardware only. Providing viral safeguards for these systems

is a first step toward overall computer system protection. The question

then, is "How do we provide protection from viral attack?".

I will broadly define a virus as any program which replicates and

spreads itself secretly. Assuming a given computer is not infected when

manufactured , the infection must occur during use. This implies the

infection vector 3 is the software' which is then added to it by the use--.

We can then narrow our research question to "How do we prevent the

loading of infected software?".

Before answering, we must understand the nature of the threat, the

types of existing viral detection and removal tools, and potential means of

protecting software. These issues will be addressed in the following

chapters.

1 This is not unrealistic since the vast majority of microcomputers

dedicated to mission support functions are IBM compatible. Indeed many
competitively bid procurement contracts i "e specified this compatibility
as a requirement.

A valid assumption since memory is empty and any disk drives are
empty or unformatted.

3 "An agent capable of transmitting a pathogen from one organism to
another either mechanically as carrier or biologically by playing a specific
role in the life cycle of the pathogen." [Webster's Third New International
Dictionary)

Commercial, shareware, or public domain only, since I assume a
software developer will not write code to deliberately infect and damage his
own system.

4

II. NATURE OF THE VIRUS THREAT

A. NAME ORIGIN

Virus is a normal Latin 2nd declension word meaning 'slime', 'poison',

and 'offensive'. While its first English usage was in 1599, it was not used

in its present meaning as 'filterable virus' until 1880. [Oxford English

Dictionary, Second Edition] The invisible and destructive nature of the

biological virus led to its adoption as the name for its electronic cousin.

In fact, many researchers use terms reminiscent of the biological virus:

vector, infection rate, and vaccine. The plural of 'virus' as used in

English, is 'viruses'. 2

B. TYPES OF VIRUSES

Computer viruses can be categorized in three major classes based

upon their area of system residence and/or infection:

" boot infectors

• system infectors

" executable program infectors

I"An infectious organism, usually submicroscopic, that can multiply
inside certain living host cells. A non-cellular structure lacking any
intrinsic metabolism usually comprising a DNA or RNA core inside a protein
coating." [Oxford English Dictionary, Second Edition] It would pass through
filters that would stop bacteria.

I Of note is the significant disagreement between academicians
concerning the 'true' plural of 'virus'. The first quarter of 1990 saw weeks
of electronic word war via the VIRUS DISCUSSION LIST and other research
oriented electronic forums concerning this point. For my part, I use
'viruses' throughout this work to represent the plural.

5

1. Boot Infectors

These viruses reside in a disk's I boot sector.2 If active in

memory, a boot virus will infect a new disk by relocating the boot sector

contents to a previously empty disk sector and marking it as bad in the

File Allocation Table (FAT). 3 The virus then adds a jump instruction to its

end and writes a copy of itself to the boot sector.4 The jump ensures that,

after the boot virus is loaded into memory and executed during booting,

computer control is passed to the original boot code at it's new location.

An infected disk can infect the system whenever the disk boot

sector s executed.5 While memory resident, these viruses can infect any

I DOS disks are organized using a rigid scheme. Each disk in a drive

is divided into one or more logical volumes. Each logical volume consists
of four areas: the boot sector containing configuration and bootstrap
information, an original and backup File Allocation Table (FAT) which holds
cluster chaining and ownership information, the disk root directory which
holds information pointing to the first cluster in the FAT chain holding a
given file's or subdirectory's data, and the file area which consists of
clusters maintaining file data chained by the FAT pointers.

2 The boot sector, logical sector contains critical information

regarding the disk medium such as: DOS tame and version, bytes/sector,
sectors/cluster, number of reserved sectors, number of FATs, number of
root directory entries, total sectors in the logical volume, media descriptor
byte, number of sectors/track, number of disk drive heads, number of
hidden sectors, and the disk bootstrap to load the operating system from
disk (the ROM bootstrap is smart enough to home the disk drive head, read
the boot sector from disk, and jump to it in memory).

3 The "bad" sector marking in the disk FAT ensures that these
sectors will not normally be examined or altered by the system.

4 Boot infectors typically mark several "good" disk sectors as "bad".
These sectors are then used to hold the original boot sector code plus
whatever virus code would not fit in the boot sector.

5 A disk's boot sector is examined whenever drive hardware detects
a diskette change or upon system reset for logical drive 0 only.

6

disk in the system. These viruses are fairly tame since they infect a given

disk only once and are relatively easy to find.

2. System Infectors

These viruses attach themselves to the command interpreter and

other system files that remain memory resident and reside on bootable hard

or floppy disks.! Except for exclusively targeting system files, these

viruses behave similarly to executable program infectors which are

discussed below.

While the relatively small number of systems programs should

make these viruses somewhat tame, the fact that systems programs remain

memory resident and are frequently called allow these viruses to cause a

high degree of infection in a short span of time.

3. Executable Program Infectors

These viruses are particularly troublesome since they can spread

to any executable program2 in the system by either appending or

overwriting. A virus generally appends itself to either the front or back

end of an executable file. 3 Front end appenders situate their code so it is

I The 8086/8088 family of microprocessors are designed so that, when

reset or powered up, program execution begins at memory address
OFFFFOH. This lies within ROM memory and contains a jump instruction to
the system power up self test (POST) and bootstrap code. The bootstrap
code loads and executes the system programs MSDOS.SYS and IO.SYS.
IO.SYS ultimately loads and executes the command interpreter
COMMAND.COM.

2 Any program ending with the suffix COM, EXE, OVL, or BIN is

considered by the operating system to be executable.

3 According to John McAfee, Chairman of the Computer Virus Industry
Association (CVIA) and President of McAfee Associates, a Santa Clara,
California based anti-viral research and marketing firm:

7

executed before the host program. After the virus performs s task, it

then returns control to the legitimate code. Back end appenders usuall-.-

add a JUMP instruction in the front end pointing to the viral code. Aft

virus execution, another JUMP points back to the original program code.

Overwriting viruses simply replace a section of the existing code with their

own instructions. This subgroup is usually detectable earlier in the

infection process since the host program may no longer function correctly.

The appenders may slow program performance but will generally escape

detectior ';ntil the virus damage sequence is triggered.

This type virus usually accomplishes its infection by either:

" copying itself to another executable file whenever an infected program
is executed and then passing control to the host program

" by remaining memory resident and infecting each program that is
loaded into memory

During infection, the original file size, date, and time may be

changed. However, sophisticated viruses may save and restore the original

values when writing the modification to disk. Additionally, to avoid early

detection and maximize infection, the virus may avoid previously infected

"Viruses can attach to a program's beginning, end, middle, or any
combination of the three. They may fragment and scatter virus
segmenta throughout the program or keep the main body of the virus
unattached to the program, hidden in a bad sector. All known viruses,
however, [modify the program's beginning to] ensure the virus is
executed before the host. If this were not so, the uncertain
environment in which the virus executed would increase the
possibility of program failure [and early detection]. Viruses which
replace entire programs, such as boot infectors, and viruses that
attack only specific programs (such as system infectors], are the only
exception to the this rule. These viruses may gain control at any
point, since the structure of the host program is well known and the
environment can be predicted." (McAfee, 1989)

8

files or delay its damage sequence until infection has reached a

predetermined level.

C. PROPAGATION ESTIMATES

Estimates of viral multiplication rates are not easily obtained for many

reasons:

• computer hardware may remain constant but software used and
preventative measures taken may vary greatly from site to site and
machine to machine

" many researchers are reluctant to divulge their estimations since they
are often derived from reports concerning products they are
supporting

" this information is still considered 'embarrassing' and 'sensitive'

Dr. Fridrik Skulason, virus researcher at the University of Iceland,

Technical Editor of the Virus Bulletin (UK), and consultant to the Naval

Computer Incident Response Team (NAVCIRT) at the Naval Electronic

Systems Security Engineering Center (NAVELEXSECCEN) in Washington, DC,

has, however, recently released estimates for two of the oldest and most

wide-spread viruses. I These appear in Figure 1.

Total nunber of PCs 30.000.000 machines
Number infected with Jerusalem 100.000-500.000 machines
Number infected with Brain 100.000-500.000 machines

Figre I - Estimated PCs Infected with Jerusalem and Brain (Skulason, 1990, *3-64)

1 The Jerusalem and Pakistani Brain viruses are about 51 and 74

months old, respectively.

9

Figure 2 provides the amended estimate if each infection I on the same

machine is counted.

S Number of Jerusalem infections 2.000.000-10.000.000 infections

Number of Brain infections 1.000.000- 5.000.000 infections

igvuz 2 - Estimated Jerusalem and Brain Infections (Skulason, 1990, #3-64)

Of note is the apparent virility of Jerusalem compared with Brain

even though Brain is a third older. This is primarily due to its targeting

of executable programs instead of the comparatively rare disk boot

se- .ors.2

Skulason hypothesizes that viral infections increase exponentially over

time but slow as the virus saturates the system. This can be seen in

Figure 3. His experience with organizational infections 3 indicates that once

a virus infects a computer, it will usually spread organization wide in one

to two months. (Skulason, 1990, #3-64).

1 Skulason estimates that 20 infected programs reside on every
Jerusalem infected machine, and 10 diskettes have been infected by every
Brain infected computer.

2 According to John Mildner, head of the Naval Computer Incident

Response Team (NAVCIRT) at the Naval Electronic Systems Security
Engineering Center (NAVELEXSECCEN) in Washington, DC: "Jerusalem
probably spreads more rapidily since it uses executible files as the
infection vector. These files are often transfered electronically via bulletin
boards or computer networks. On the other hand, the virus most common
to the Navy, the Stoned boot sector virus, is spread by exchange of data
files on floppy diskette." (Mildner, 1991)

3 Organizations in Iceland are not that large - The Bank of Iceland
is one of the largest and had about 700 PCs as of mid 1990.

10

percent infected

100 %

so X

o* *

20 %

0 %

a *

0 ______________sstsSal a

2 X+2 x+3 months

Figure 3 - Percentage of Organization Infected vs Time (Skulason, 1990B)

Skulason shows that the number of infected computers will rise slowly

when the virus is first introduced, but, assuming favorable conditions I , a

virus will infect 80% of the machines within 2 months. The virus will then

probably remain unnoticed for some time. 2 Once detected, it is usually

removed swiftly, but, almost never completely. When it reappears a month

or two later, some preventive software is finally installed and the virus is

defeated.4 (Skulason, 1990, #3-64)

D. RELATIVE FREQUENCY

A virus's frequency of occurrence is related to its propagation rate

and age. Viruses which propagate faster such as executable infectors will

I Such as lack of preventive hardware or software, or significant disk

or program traffic between different computers.

: This is the period in which the virus actively replicates without any
noticeable performance degradation or damage sequence.

3 Particularly if backup files loaded to recover lost data files have
been corrupted.

4 Skulason estimates that, in Iceland, about 5% of all PCs have been
infected with a virus. However, viewing single organizations, he either
finds no viruses or an 80% infection rate.

11

be seen more frequently than slower propagators like boot infectors.

Likewise, older viruses have had longer to establish themselves in the user

community and will be spotted more frequently than viruses which have

just been isolated. Figure 4 lists the relative frequency of viruses as

observed by David Chess, Fridrik Skulason, and Morton Swimmer.

USA Iceland FRG

Bouncing Ball 26% 30 % 10%
1813 (Jerusalem) 21% 5 % 15%
1704 15% 50 % 20;
Stoned 9 2 % 10%
1701 8" 5 % 5%
648 (Vienri) 7% 10%
Brain 7% 2 %
Yale 1%
17Y4 < 11
2772 (Y.D.) < 1%
765 (12
Disk Killer < 1% 2 % 5%
Lehigh 1 < 1%
Sunday < 12
Sylvia < 1%
Icelandic 1/2/3 3 %
Ghostballs 1 2
Macho 1%
Advent < 12
Dark Avenger 2%
5120 (12
Vacsina (TP04) 5%

Figure 4- Observation Frequencies (Chess, 1990)(Skulason, 1990, 3-91)(Swimser, 1990)

These figures indicate that at least 70 percent of the infections are

caused by half a dozen viruses. As of February 1991, 222 major virus

strains have been isolated. Therefore, more than 70 percent of infections

are caused by less than 3 percent of the known strains.1 This makes the

virus Identification and removal problem much more manageable.

I Joh' McAfee identifies 10 viruses (Pakistani Brain, Jerusalem,

Alameda, Cascade, Ping Pong, Stoned, Lehigh, Den Zuk, Datacrime, and Fu
Manchu) which, he believes, represent 95 percent of reported infections.

12

Details of specific infection cases in the United States are provided

in Appendix A (McDonald, 1990). A chronology of the Dark Avenger virus,

as told by its author, can be found in Appendix B (Skulason, 1990, *3-97).

E. VIRAL GENEALOGY

As the number of viruses increase, so does the difficulty of tracking

their inter-relations. Figures 5 and 6 provide the genealogy for those

viruses considered related to others.

Alameda ---- several minor variants
Golden Gate
SF

Ashar -------- Brain -------- some minor variants
Clone
Chaos

Ohio ---------Den Zuk

Ping-Pong ---- a number of minor variants

Big Italian
Ping-Pong '286
Typo

Figuar 5 - Boot Infectors (Skulason, 1990, #3-89)

Like its biological counterpart, a computer virus tends to evolve and

mutate. This mutation is controlled by programmers who generate new

viruses from the source or disassembled code of older ones. This process

often precludes major changes or enhancements and may assist identifying

new viruses soon after they appear.I Appendix C (McAfee, 1991) details

infection and damage characteristics for known IBM compatible viruses.'

I A recent development, however, has been the use of self encryption

to hide and avoid detection.

As of 26 February 1991.

13

April let CON--
--Suriv 3.0 --- Jerusalem --- many minor variants

April 1st EXE ---t Century
Fu Mlanchu
Sunday
Payday
PSQR
Prudens
Anark ia

Cascade (1701) --- 1704 --- many minor variants

1704 Format
1 7Y4

Dark Avenger- ----Dark Avenger 2000

* Datacrime 1168 ---- Datacrime 1280 ---- Datacrime 2Z---- Datacrime 2B

Icelandic ---.----Saratog.
+---Pfjxl--- -M1ix1 B
+---Iceland. 4 ---- December 24th

Old Yankee ---------------------

+---Yankee (around 15 variants,
* Vacsina (over 20 variants) -----

Pixel -------- many Bulgarian variants
Amt rind

South African ---.----a few minor variants
+---Virus-8 --- some minor variants

Syulock ---.----fMacho

+---Advent

Traceback --- 2930

Vienna ------ 3urger's variant ---- Lisbon
1260
Choutballa

+---New (Bulgarian) Vienna --------- many minor variants

Virus-90 --- Virus-IGI

Vig., 6 - Rzocutable Program Infectors (Skulason, 1990, #3-89)

14

II. VIRUS IDENTIFICATION AND REMOVAL

A. IDENTIFICATION

Virus identification can either be inadvertent or deliberate. For the

average PC user, viruses are unknown or something that infects 'others'.

Either way, little or nothing is done to catch infection before the damage

sequence is initiated. Infection is inadvertently discovered when the virus

triggers, performs its destruction, and possibly identifies itself.

Deliberate identification involves the active use of various software

tools tailored to locate, identify, and, perhaps, remove viruses. These tools

fall into three major categories:

" programs which prevent infection

" programs which detect infection after it has occurred

" programs which identify pre-existing infection

John McAfee, Chairman of the Computer Virus Industry Association

(CVIA)' and President of McAfee Associates', a Santa Clara, California

based anti-viral research and marketing firm, points out that:

"These products, however, are not always clearly separable in the

marketplace. Some combine two or more programs, each addressing a

I CVIA is reputed to consist of 95 percent of the anti-viral community.
Most of the members are vendors of anti-viral products. It is a source of
anti-viral programs and general virus information. Additionally, it is one
of the few groups providing cross system (IBM, Macintosh, etc) information.

I McAfee products are discussed in this paper for illustrative

purposes only. This does not represent endorsement by the author or the
Department of the Navy. They represent the entire product spectrum.

15

single protection i. into a single package. Others may focus on a
single type of p. ction but only provide a partial solution. For
example, there exist infection detection products that will only detect
changes to operating system files, ignoring all other executable code."
(McAfee, 1989)

Minimum capabilities and evaluation procedures for these tools have

been defined by the CVIA and are listed in Appendix D and E, respectively

(McAfee, 1989). Appendix F lists some of the commonly used anti-viral

products and their vendors.

1. Infection Preventors

These programs normally monitor the system watching for

characteristic viral activities'. If detected, they suspend activity, alert the

user, and offer to terminate the suspect program.

The primary benefit is that all suspicious activity will be caught

and viruses will not infect the system or spread.2 This means that strain

identification and removal is not required. Conversely, the drawbacks

include numerous interruptions to valid programs 3 using these system

3uch as absolute sector disk I/O, disk I/O to systems files, and
altera)n of interrupt vectors.

. With the exception of boot infectors. No software technique can
prevent initial infection from a boot virus.

I McAfee believes these programs require a user with a "fair amount
of technical competence" to discriminate between legitimate program activity
and a ;al virus threat.

"Some applications modify their executable modules during the
configuration phase. Compilers, assemblers and linkage editors
legitimately modify or replace executable code. The DOS SYS command
will legitimately modify the boot sector and operating system files.
These and other programs may cause anti-viral products to flag the
activity and notify the user. The user must have sufficient knowledge
of the program or activity in process to determine whether to allow
it to proceed or to terminate it. Many system users do not have the
necessary technical depth to make a valid decision" (McAfee, 1989)

16

calls, user de-sensitization due to false positives, and reliance on the

virus being 'well behaved ' .

These products should be tested, prior to use, to determine the

degree of protection afforded executable files and the product's sensitivity

to valid activities which might appear suspicious.

2. Infection Detectors

Detection products operate by vaccination or status logging.

Vaccinators modify executable code to include a self test module which

generates a run-time warning whenever the code has been modified. Status

loggers create a baseline file containing key file information (sizes, dates,

checksums, etc.) and routinely recheck this information to see if it has

changed. If a modification is discovered, a warning message is given to

indicate the areas of infection. In both methods the key assumption i3 that

the system is not infected prior to installation.

! If the product flags too many legitimate activities, the user becomes

conditioned to respond with 'continue' without reading the warning.

I The assumption that viruses perform I/O through system calls or

software interrupts is reasonable because it allows execution on a wide
variety of hardware. John McAfee, however, notes tLit some virus
designers are:

"taking the extra effort, and running the increased risks, of
interfacing directly to the hardware input/output devices. By doing
so, they completely neutralize the infection prevention products'
interrupt monitoring. No matter how cleverly software interrupts are
trapped, or memory monitored, it is ineffectual if the virus never
gives up processor control through an operating system call."
(McAfee, 1989)

17

Advantages include checking at boot time instead of program

execution and avoidance of interrupt monitoring . Drawbacks include on

line baseline file maintenance making it vulnerable to tampering, the

necessity of strain identification and disinfection, and the assumption that

the system is infection free when the baseline is generated. A serious

drawback of vaccination products is that they can not detect viruses that

replace code rather than modify it since any vaccination code would never

have an opportunity to execute.'

Since these products identif infec.ion after it has occurred,

testing should be conducted, prior to use, to determine if they can detect

modifications to executable programs such as the boot sector, the operating

system, or an application program. John McAfee explains that:

"Many detection products use the virus attachment profile to
speed system checking. If every byte of every program is
processed in some comparison technique global checking may take
some time. Systems containing many hundreds of large programs,
may require anywhere from 5 to 15 minutes to complete the
audit. Since a global scan should be performed at least daily,
this time requirement is a significar nuisance to the average
user and a deterrent for the imp entation of the product.
Products that only look for the chaz .teristic initial instruction
modifications, on the other hand, would complete the same audit
in a matter of seconds."(McAfee, 1989)

3. Infection Identifiers

Identification products scan a system using signature byte strings

to uniquely identify disk or file infection and may often provide

Regardless of a virus's sophistication, some executable code will have

changed after infection.

2 Boot sector viruses, for example, replace the boot sector with

themselves.

18

disinfection and recovery assistance. Their primary function, however, is

identification.I

The main benefits are the lack of assumptions and the relative

speed of execution. The main drawback is the almost constant stream of

new product releases" required as new viruses are isolated and old ones

mutate .

John McAfee describes the development of identification products:

"The virus must first be discovered and isolated. Then it must be
disassembled and analyzed. Finally an effective countermeasure must
be designed, implemented, and distributed to the public. The time lag
for this process is a few months to a year or more. This window of
opportunity for new virus developers will be a continuing barrier for
such products." (McAfee, 1989)

These products can best be evaluated by their success at

removing an actual infection.

B. REMOVAL

Fortunately for the microcomputer user community, if viral infection

can be identified prior to the initiation of the damage sequence, a virus

can usually be removed without loss of data or program files. Two general

categories of disinfection products exist:

" products which remove a specific virus or group of viruses

" products which remove all viruses

1 They can determine if a system is clean prior to installing a

prevention or detection product.

I McAfee releases a new version of VIRUSCAN about every 3 months.

3 Viral researchers must then identify a signature byte string which
uniquely identifies it. That signature string must be included in the next
release of the anti-viral product.

19

1. Virus Specific Disinfectors

These products are able to target a specific virus strain or group

of strains for removal. I They are often included with, or as part of, a

detection or identification product. 2 Authors of these programs frequently

release revisions as new or mutated viruses are isolated. 3

As elsewhere, terminology is a point of contention within the anti-

virus industry. With luck, the following termsI will become industry

standards:

" signature string: a sequence of bytes used by anti-viral programs to
check if a program is infected

" identification string: a sequence of bytes used by a virus to check
if a program is infected

2. Universal Disinfectors

A universal virus detector and disinfector (UVD) would detect and

remove viral infections both known and unknown. This, of course, depends

on our ability to define viral activity under all circumstances.

We can appreciate the probl by refining our virus definition.

Fred Cohen defined a virus as "a program that can infect other programs

I As of February 1991. 217 major virus strains exist. If modifications

to these viruses are cour d, there are 475 known IBM PC viruses.

I McAfee's VIRUSCAN can remove many of the most common viruses.
The disinfection product CLEANUP is also provided to remove all viruses
which VIRUSCAN is capable if identifying.

John McAfee releases a new version of CLEANUP about every 3
months.

4 The terms have been defined as use by IBM, but, they have been
used interchangeably by other researchers

20

by modifying them to include a slightly altered copy of itself" (Cohen,

1984). Unfortunately, this remains valid only if modernized as follows:

t "program" should also include boot sectors, INITs and all other forms
of executable code

* "include" must also cover viruses that overwrite the victim and may
destroy it completely

o "slightly altered" is inaccurate. One can imagine a virusl that
includes only a part of itself in infected programs (Skulason, 1990,
#3-24)

Consider Figure 7.

Program P1
Display "This is a copy utility"
Display "Name of input file ?"
Input In-File
Display "Name of output file ?"
Input Out-File
Copy In-File to Out-File

End

Figure 7 - Copy Utility Pseudo-Code (Skulason, 1990, #3-24)

Skulason details a program with three parts:

* Part A contains the main program
Part B contains program locating and memory residency procedures

• Part C contains I/O routines.

Assume P1 contains A+B and P2 contains A+C. Singularly, since they are
unable to replicate, they are not viruses. When executed, P1 and P2 will
not infect other programs. P1 will hide B in memory and execute the
original program. P2 can check if B is present in memory. If so, A, B and
C are combined in memory and executed. This new program uses B to find
more programs to infect, using C, with A+B or A+C. The program A, B and
C is a virus. However, it includes inert code instead of a slightly altered
copy of itself in other programs. The virus only activates when its parts
are combined. (Skulason, 1990, #3-24)

21

If we tell P1 the input file is itself and some existing progr tim is

the output file, P1 will behave, and be classified, as an overwriting virus.

P1, however, is not a virus since:

" It asks for the name of source and target files; and,

" It destroys the victim instead of executing it after the virus.

Objection 2 may not be valid, however, since this is how some existing

viruses work. (Skulason, 1990, #3-24)

Consider Figure 8.

Program P2
Display "Name of output file ?"
Input Out-File
Copy P2 to Out-File

End

Program P3
Display "Name of input file ?"
Input In-File
Select Out-file at random
Copy In-File to Out-file

End

Program P4
Select Out-Vile at random
Copy P4 to Out-File

and

Figre 8 - Potential Virus Pseudo-Code (Skulason, 1990, #3-24)

We want a UVD to identify P4 as a virus. It should also indicate

that P2 and P3 might be virus like in some circumstances. Unfortunately,

As well as most operating systems since they 'infect' other programs

in the same way. A compiler used to compile a copy of itself would also
qualify.

22

determining those circumstances is where the difficulty arises. (Skulason,

1990, #3-24)

I Assuming that the examined program and it's environment are of
finite size, I/O operations transfer finite amounts of data, and the UVD
program runs on a different machine, a UVD may be possible but only on
a machine many orders of magnitude more powerful than that running the
examined program. If the first is a Sinclair ZX80, with 1K of memory, the
second would need to be more powerful than all current super computers
combined. (Skulason, 1990, #3-24)

23

IV. VIRUS INFECTION PREVENTION METHODS

Prevention can be divided into three areas:

" user training

" hardware measures

" software measures

A. USER TRAINING

The basic building block of security is user training. Hardware and

software can not protect a user from himself. A solid foundation in anti-

viral measures can be laid by a two step training program:

• basic precautions

" virus recognition

1. Basic Precautions

Most viral damage can be easily prevented by simple user

precautions:

" boot only from write protected copies of the distribution diskette

" if the system has a hard disk, never boot from a floppy disk

" set file attributes to read only on as many executable files as possible
to help prevent spread of infection

24

" consider public dmain, shareware, and borrowed software infected
until proven clean

" watch for changes in system activity such as increased disk accesses,
unusual error messages, lost disk space, disk access at odd time,
decreased available memory, slow response, or unusual screen displays
or sounds

• in a network environment, load proven software to a file server and
set file attributes to read only

• do not use master/distribution diskettes as working diskettes

" keep master/distribution diskettes in a safe place, away from the
computer working area

" make frequent backups of changing data files

2. Virus Recognition

A Virus Simulation Suite is available to mimic the visual and

audible effects of the most common microcomputer viruses.2 Like their

infectious counterpart, these programs are terminate and stay resident

routines. Unlike the real virus, however, they can be turned on and off

by the user and are not infectious. Some have a programmable delay,

usually in minutes, to simulate the replication period. Simulations currently

available include:

I Actually, the same holds for shrinkwrapped commercial software.

Shrinkwrap does not mean virus free. It is most frequently used in
conjunction with the licensing language, i.e., breaking the shrinkwrap
means agreement with the terms of the license. Package encapsulation to
reduce the risk of loss or contamination and increase the probability that
tampering will leave evidence is an incidental benefit.

I The Virus Simulation Suite is written and maintained by Joe Hirst
at the British Computer Virus Research Center, 12 Guildford St, Brighton,
East Sussex, BN1 3LS, England. He can be contacted at 0273-26105.

25

• Cascade

• Den Zuk

" Fu Manchu

" Ping Pong

" Jerusalem

These simulations could help develop viral activity recognition in

users.

B. HARDWARE MEASURES

Virus protection, as in many areas of computer security, may be

possible, but, certainly not foolproof, without hardware assistance. Many

incidence of viral infection could be reduced or eliminated by the

introduction of a few hardware elements of varying cost:

" write protect tabs

• tamper-proof shrinkwrap

" CD ROM

1. Write Protect Tabs

These devices are inexpensive and easy to use. Most computer

systems, and certainly those manufactured in the last five years, implement

disk write protection in hardware vice software. Since this hardware

inhibits disk writing if the tab is in place, viruses can not corrupt a write

protected disk. Write protect tabs should be on all floppies put in a

system.
1

I The hard drive or a dedicated flopp :ould then be used for output.

26

Original distribution diskettes should be write protected as soon as

removed from the shrinkwrap and either installed on the hard drive or

diskcopied to other floppies to make a working copy of the software.

2. Tamper-proof Shrinkwrap

Unfortunately for the buyer, many software stores have the

capability to re-shrinkwrap software which has been purchased and

returned or used for showroom demonstration. While this makes the product

once again available for sale, it does nothing to protect the buyer from

diskettes which were infected by the machine on which they had been

previously used. To preclude this unsuspected hazard, tamper-proof

shrinkwrap, perhaps bearing the vendor's corporate logo, could be used.

Opening and resealing of software could be immediately determined by

inspection.

3. CD ROM

Since systems are infected by using infected software, the most

certain means of preventing infection is using only software which is

certified virus free. We must then ensure it is never unintentionally

modified. One method is the exclusive use of software on CD-ROM. This

optically read storage medium, while much slower and more error prone

than electrically read magnetic media, is forever inscribed with the digital

data representing program and data files. All program output would be

directed to regular magnetic media. The drawback is the prohibition of

user software customization.

27

C. SOFTWAR 4fEASURES

The last svftware method for combatting viruses includes two types

of measures:

* virus scanners which search for viruses in memory and on disk

* software which authenticates user software prior to use from a known

true baseline

1. Virus Scanners

Virus scanners are programs which search computer memory and

disk storage looking for signature byte strings characteristic of known

viruses. As previously discussed, there are three major categories:

* programs which prevent infection

" programs which detect infection after it occurs

• programs which detect pre-existing infection

2. Authentication Methods

Software, both commercial or government produced, is shipped

from vendors to either retailers or users. While undergoing development,

we assume that it is protected. However, while sitting in storage, or on the

user system itself, we consider it vulnerable. (Spafford, 1990)

Given this, we may develop a software authentication process

consisting of the following:

" the vendor generates digitally signed software

" the user verifies the signed software

• the user installs and customizes the software on his system

" the user digitally signs his installed copy

28

* the user's system checks the executing software using hardware
and/or software authentication methods (Davida, 1989, p 313)

Hardware is generally more tamper resistant than software. The

same holds true for hardware based authenticators. The actual

authentication method used, however, will be decided based on the level of

security (degree of trust) required and the dollars available for procuring

this means.

The inherent vulnerability of software based security systems is

often compensated for by requiring complex access procedures,

sophisticated self verification, or booting from special software diskettes.

Unfortunately, this may be more than the average user will religiously

adhere to. Conversely, complex hardware based authentication systems

could be subverted by implanting malicious code into the IC chips during

the design process. 1 This necessitates testing and validation of

authentication equipment by external means. Validation testing could be

eased by simple authentication hardware design since:

" chip complexity would be low

" chips could be procured from multiple sources making tampering
impractical

" multiple chip design would require the malicious code to be spread
across devices to perform its task

" chips older than computer viruses could be used (Davida, 1989, p 315)

1 Acknowledging this, the Department of Defense has recently started

work on its own semiconductor plant. This plant would produce "clean" IC
chips for use in sensitive equipment.

29

The key problem then is the verification of the verifying means.

A possible solution is the use of cryptography and digital signatures to

'sign' a software package. The vendor signs his release or update and the

user authenticates the signature. Once validated, the software can be

installed, customized as required, and 'sealed' by the user using his own

digital signature.

A program may be checked when installed and each time it is

executed. 1 The question of authentication granularity, like the hardware

or software authentication issue, is one of degree. Determir ion of the

level at which to sign an executable, i.e., program, process, or instruction,

is a function of the degree of trust requ :ed, the speed of the

authentication process, the size of the executable, and the method used.

(Davida, 1989, p 317)

A complete check may not be possible if segments are only loaded

as needed. In timesharing envi" iments a process is at risk whenever it
doesn't control the processor. -nts such as paging, segmentation, or
process swapping open the code ampering. Re-authentication would then
be required prior to regaining ;ntrol.

30

V. AUTHENTICATION MIRTHODS

This section examines the theory behind several software

authentication methods broadly categorized as "digital signature"

generators. A digital signature is a property, private to a user or process,

that is used for signing messages. A reliable digital signature must satisfy

five requirements:

* the signature must be unique and be able to be generated only by
the user

* it must be computationaly infeasible for authentic signatures to be
generated (forged) by unauthorized users

* any receiver of a digitally signed message (and any dispute
arbitrator) must be able to authenticate the signatures authenticity
even after a considerable period of time

" digital signatories must not be able to deny an authorized signature
as a forgery

" digital signatures must be cheap and easy to generate (Seberry, 1989,
p 155)

The digital signature, since it's non-forgeable, establishes sender

authenticity equivalent to a written signature.

This work advocates implementation of initial authentication means with

the least delay and cost possible. Therefore, the following methods, ordered

from the simple to the complex, were reviewed since they represented

existing, well understood, and easily implemented technology. They are:

• checksums

" cyclic redundancy codes

" encryption

31

" message authentication codes

" hybrid systems

A. CHECKSUMS

The simplest and fastest form of digital signature is the checksum.

Checksums treat a file as a series of binary numbers. By summing all the

binary numbers, a checksum or total value can be found. Changes to files

can be readily determined by recalculating the checksum and comparing it

with the previous result.'

A file changed by a virus will have an altered checksum unless the

virus tries to compensate. Unfortunately, it is quite easy to determine a

file's stored checksum and determine an additive byte string which

'corrects' the corrupted file's checksum. Therefore, checksums do not meet

requirement 2 for reliable digital signatures and are not sufficiently robust

to detect changes in the face of a clever attack.

B. CYCLIC REDUNDANCY CODES

Most commonly used for error detecting during data transmission,

polynomial or cyclic redundancy codes (CRC) can be used to detect changes

caused by viruses. CRC codes are generated using input bit strings as a

representation of a polynomial with coefficients of 0 or 1. A n-bit message

or message segment is regarded as the coefficient list for a polynomial of

degree n-1 with n terms, ranging from x1_1 to x0.

I This method is used by many operating systems including DOS to
determine if reads and writes from and to disk have been performed
correctly.

32

Polynomial arithmetic is performed modulo 2 and is functionally

equivalent to an exclusive or operation. Long division, using modulo 2

subtraction, can only be performed if the dividend has as many bits as the

divisor.

The CRC is computed by first selecting a generator polynomial of

degree r, G(x), with at least the high and low order bits set to 1.1 Next,

r zero bits are appended to the low order end of the n-bit message or

message segment so it now contains n+r bits and corresponds to the

polynomial xrM(x). The generator bitstring (the coefficients of G(x)) is then

divided into this new bitstring (the coefficients of xrM(x)) using modulo 2

division. The remainder is then subtracted from the x7M(x) bitstring using

modulo 2 subtraction. This resulting bitstring, polynomial T(x), is the new

message or message segment which is then sent. Upon receipt, it is divided

by G(x). If a remainder exists, a transmission error, or virus corruption,

has occurred.

Since this technique is more sophisticated than a checksum, it can

detect more subtle changes. Checksums rely solely on addition which is

insensitive to the order of the added numbers and can not detect byte

swapping. CRCs, however, can detect bit and byte swapping due to the

position dependent logic used.2 While most alterations will be caught, the

CRC method will not detect errors or corruptions corresponding to

polynoials containing G(x) as a factor. If G(x) contains two or more terms

I Three polynomials have become international standards for G(x):

CRC-12, CRC-16, and CRC-CCITT.

I CRCs are frequently used in floppy disk controllers in order to
determine whether information has been correctly retrieved from disk.

33

(order r >1), all single bit errors will be discovered. By making x+l a

prime factor of G(x), we can catch all errors consisting of an odd number

of inverted bits. Lastly, a CRC code with r check bits will detect all burst

errors of length <=r. Larger bursts have a (1/ 2)tI probability of being

unnoticed. (Tannenbaum, 1989, pp 210-211)

The bottom line is that requirement 2 for reliable digital signatures

is not met.

C. ENCRYPTION

Cryptography usc ciphers to transform standard plaintext messages

into secret ciphertext ones. This process, called encryption, and its

reverse, decryption, are controlled by one or more cryptographic devices

called keys.

Ciphers are typically classified in one of two general types:

transpositions or substitutions. The former rearrange data bits or message

characters while the latter replace bits, characters, or character blocks

with previously chosen substitutes. Most computer applications, such as the

National Instit -e of Standards R-d Technology (NIST) Digital Encryption

Standard (DES) use both techniques .

Cryptoanalysis is the science of cipher breaking. A cipher is

breakable if it is possible to determine either the plaintext or the key from

the ciphertext, or the key from plaintext-ciphertext pairs. There are three

basic methods used for attacking ciphers:

Often implemented in a combination of hardware and software.

34

" ciphertext only

" known plaintext

" chosen plaintext (Denning, 1982, pp 2-3)

A ciphertext only attack requires the determination of the key solely

from intercepted ciphertext, knowledge of the method of encryption,

purloined plaintext, knowledge of the ciphertext subject matter, and testing

for high frequency use words. The known plaintext attack method uses

knowledge of some plaintext-ciphertext pairs.' Ciphers should be accepted

for use only if they can withstand a known plaintext attack using an

arbitrary number of plaintext-ciphertext pairs. The last method, chosen

plaintext attack, is the most favorable for the cryptoanalyst. This attack

assumes possession of the ciphertext corresponding to selected plaintext. !

A cipher is unconditionally secure if, no matter how much ciphertext is

intercepted, there is not enough information to determine the plaintext.

(Denning, 1982, pp 2-3)

While all ciphers are breakable given unlimited resources and time, we

need not develop them to withstand open-ended attack. A cipher which is

computationally infeasible to break will suffice. Computationally secure

ciphers can not be broken by systematic analysis with reasonable

resources and time.

I Encrypted computer source programs is an example. The ciphertext

must contain certain keywords such as begin, end, loop, if, while, read,
write, etc. An educated guess as to their placement can be made and the
attack begun. The same can be done with the executable version of the
software if the equivalent machine instruction byte codes are known.

I Databases have been identified as being particularly susceptible to

this type of attack if users can insert records into the database and then
observe the changes in the stored ciphertext.

35

1. Cryptographic Systems

A cryptographic system has five components:

" a plaintext message space, M

• a ciphertext message space, C

• a key space, K

" a family of encrypting transformations, E,: M=>C

• a family of decrypting transformations, Di: C=>M (Denning, 1982, p 7)

A given encrypting or decrypting transformation is defined by an

algorithm common to the entire family but using an unique key. For a

given key K, the decrypting transformation DK is the inverse of the

encrypting transformation F, such that D(EI(M))=M. The transformations

F and D, are described by parameters called the encryption key and

decryption key, respectively. (Denning, 1982, p 8)

Cryptosystems must satisfy three general conditions:

" the encrypting and decrypting transformations must be efficient for

all keys

• the system must be easy to use

. the security of the system should depend only on the secrecy of the
keys and not on the secrecy of the algorithms E or D (Denning, 1982,
p 8)

The first requirement is essential for a computer based application

since data encryption and decryption, usually performed at transmission

time, must not be a bottleneck. The second requirement implies it must be

easy for the cryptographer to find a key with an invertible -ansformation.

The last requirement implies that it should not be possible to break a

36

cipher simply by knowing the method of encryption or the algorithm used.

(Denning, 1982, p 8)

2. Reasons for Cryptography

There are two basic reasons for using cryptographic systems:

* secrecy

* authentication

a. Secrecy

Secrecy requires that plaintext data be impossible to

determine from intercepted ciphertext:

" it should be computationally infeasible to determine the decrypting
transformation D[from intercepted ciphertext C, even if the
corresponding plaintcxt M is known

* it should be computationally infeasible to determine plaintext M from

intercepted ciphertext C (Denning, 1982, p 9)

Secrecy, therefore, requires only that the transformation D,

(the decryption key) be protected. (Denning, 1982, p 9)

b. Authenticity

Authenticity requires that a false ciphertext C' can not be

substituted for a ciphertext C without detection:

. it should be computationally infeasible to determine the encrypting
transformation Fj given C, even if the corresponding plaintext message
M is known

. it should be computationally infeasible to find C' such that D(C') is
valid plaintext in the set M (Denning, 1982, p 9)

37

Authenticity, therefore, requires only that the transformation

E (the e ryption key) be protected. (Denning, 1982, p 9)

3. Types of Cryptosystems

Cryptosystems can be placed into two broad classes:

• symmetric

• asymmetric

a. Symmetric Cryptosystems

These systems are also called one-key :ems since the

encrypting and decrypting keys are the same or easily derived from each

other. If both El and Dg are protected, both secrecy and authenticity are

ensured. Secrecy can not be separated from authenticity since making

either Ej or D, public exposes the other. Therefore, all the requirements

for secrecy and authenticity must hold in one-key systems. (Denning, 1982,

p 10)

b. Asymmetric Cryptosystems

T ese systems are also called two-key systems with E, and

D, such that it is computationally infeasible to determine one key from

knowledge of the other. In another sense, EK and D, may be thought of as

one-way functions since they are easy to compute but computationally

infeasible to invert.1 This allows publication of one without endangering

the other. E is protected for authenticity, while protecting D, would

This means its very difficult to determine a plaintext message from

the ciphertext.

38

ensure secrecy. This duality makes these cryptosystems ideally suited for

creating digital signatures. (Denning, 1982, p 11)

D. MESSAGE AUTHENTICATION CODES

Although these functions use cryptographic means to create a message

authentication code (MAC), I will discuss them separately from

cryptosystems. These ciphers are primarily used in applications where the

need is not the decryption of transmitted data but the determination of a

correspondence between a message M and ciphertext C. This

correspondence is tested by encrypting M and comparing the result with

C.' Several types of MAC systems exist. I will examine the following:

* public keys cryptosystems

* message digests

1. Public Key Cryptosystems

The public key system, an asymmetric cryptosystem, allows two

users to hold both a public and private key and communicate with each

other knowing only the others public key.

User A has a public encrypting transformation (key) EA which may

be widely known, and a private decrypting transformation (key) DA which

is known only to him. While the public key is derived from the private key

by a one-way transformation, it is computationally infeasible to find D, (or

Computer logon passwords may be encrypted in this method. Since

they can not be decrypted, they are secure. Yet, when a user enters his
password at logon time, the transformation is applied and the encrypted
logon password is compared with the stored encrypted true password. If
they match, logon is achieved.

39

its eqL. alent) from it. It is possible to apply these transformations or

keys to ensure three different outcomes:

" secrecy

• authenticity

• secrecy with authenticity (Denning, 1982, pp 11-12)

a. Providing Secrecy

If A wishes to send B a message, and knows B's public key

E, he can transmit M to B in secrecy by sending the ciphertext C = EB(M).

On receipt, B decrypts C using his private key D, getting the plaintext

message M = DI(C) = DB((M)). While this process provides secrecy, it does

not provide authentication since any user with access to B's public key

could send a message to A or replace one with his own. (Denning, 1982, p

12)

b. Providing Authentication

For authentication, M must be transformed using A's private

key C = DA(M). On receipt, B uses A's public key M = EA(C) = EA(DA(M).

Authenticity is provided since only A can apply the private key.

Unfortunately, secrecy is not provided since anyone with access to the

public key can obtain the plaintext. (Denning, 1982, p 12)

c. Secrecy with Authentication

To achieve both secrecy and authentication, A and B must apply

both sets of transformations. A first applies his private key on M to assure

authenticity C' = DA(M). He then encrypts this with B's public key to

provide secrecy C = EI(C') = EB(DA(M)). (Denning, 1982, p 13)

40

2. Message Digests

The public key system can generate a digital signature by using

the sender's private key. This results in a signed message which is,

however, twice the size of the original. To alleviate this, most techniques

make use of data compression before forming the signature. Here, we take

a N bit message and break it up into units of n bits (where n << N). The

transformation is then applied to each of these units with the results

combined to form a signature of n bits called a message digest. The key

is ensuring that computing identical digests for two different messages is

computationally infeasible. (Seberry, 1989, p 156)

Two message digest generator methodologies follow:

hash functions

the RSA Signature Scheme

a. Hash Functions

These are one-way functions which take variable size input

strings and return a fixed size unique output string. The primary use of

hash functions is to determine if there have been any changes made to a

file.

Application of one-way function F on a plaintext message M

yields a fixed size hash code H = F(M). If M is an executable program file,

H0 = F(M) is its hash code. If M is altered in any way, a new hash code,

Ha = F(M'), will result. Thus, tampering can be detected by comparing the

new hash with the previously computed, and presumably correct, one.

41

The property of one-way hash functions allowing their use

for authentication is the computational infeasibility of finding a secon.

message M' that will generate the same hash cade H as the original message

M. Because of this, a relatively small H, 128 to 256 bits in length, can be

used to authenticate very large files. (Merkle, 1989A)

Formally, secure one-way hash functions have four properties:

" F can be applied to an M of any size

• F produces a fixed size H

• given F and M, it is easy to compute H = P

" given F, it is computationally infeasible to fin.1 a different input M',
such that M <> M' and F(M) = F(M') (Merkle, 1989B)

Since practical application requires a known input size, the

hash code is normally developed in two steps. First, function F F is defined.

It is similar to F but accepts only fixed size inputs. FF is used repeatedly

to construct F via bitwise concatenation. All properties of F hold for F,

with the exception of the fixed input size. Deducing M given H is now

equivalent to determining the key given the plaintext and the ciphertext.

(Merkle, 1989B)

b. The RSA Signature Scheme

The RSA schemeI uses both the public key cryptosystem and

data compression to form a digital signature. Assuming A wishes to send

B a signed message M, he first shortens it using compression to arrive at

the message digest M, = F(M). Next, A encrypts the digest using his

I Named as a supported algorithm in the NIST/OSI Implementor's

Workshop Agreements of Dec 1989.

42

private key to obtain the signature MR = D(MD) = DA(F(M)). The message and

signature pair (M and MS) are then forwarded to B.

On receipt of M and M, B reproduces the message digest by two

different methods. First, the digest is recreated from the signature by

applying A's public key M, = EAOMS). Then B produces his own copy of the

digest using the compression function (since it's public). If the digest

obtained from A's signature equals the digest B created, the signed M is

accepted as authentic.

E. HYBRID SYSTEMS

These systems generally use a combination of methodologies to optimize

the speed of computer processing versus level of trust. For example, a DES

based system makes major demands on a personal computer due to the

complex mathematics required for encryption. l In order to speed the

processing from the user's viewpoint, a hybrid mixture of DES and CRC,

or other means, may be used. This usually results in a small percentage

of a file being examined with a sophisticated MAC, and the remainder

examined with a high speed CRC algorithm. ! Sophisticated cryptographic

techniques are used to assure that attackers can not predict which bytes

are examined by each method. Additionally, results of all cryptographic

calculations are carried forward into all subsequent calculations. This

In fact, actual bit manipulation is most often implemented in

hardware for both speed and security concerns.

I Perhaps the portion examined by the MAC would be the code
sections most frequently modified by viruses.

43

results in a digital signature that is faster than a DES MAC and stronger

than a CRC. (Bosen, 1989, pp 7-9)

44

VI. PRACTICAL SOFTWARE AUTHENTICATION

This section examines several commercially available products which

make practical use of the theory previously discussed.

RSA's MD4 algorithm

• RSA's CHECK and SIGN programs

Enigma Logic's VIRUS-SAFE

A. MD4

This package, programmed and maintained by Ronald Rivest of RSA

Data Security, has been placed in the public domain for review and

possible adoption as a standard.1 MD4 inputs a message of arbitrary length

and produces a 128 or 256 bit message digest.

It is considered computationally infeasible to produce two messages

having the same message digest, or any message having a specified target

message digest. Although MD4 is relatively new, the security provided

should be sufficient for implementing very high security hybrid digital

signature schemes based on MD4 and a public-key cryptosystem. (Rivest,

1990)

I As have been the two previous MD family algorithms MD2 and MD3.

These were circulated throughout the industry as INTERNET RFC 1113 and
1114. MD4 has been distributed as RFC 1115.

2 RSA conjectures the difficulty of deriving two messages having the

same message digest is on the order of 2 operations, an(that of any
message having a given message digest is on the order of 2" operations.

45

The C version of the MD4 algorithm, listed in Appendix G, is coded for

a 32-bit word/8-bit byte machine and runs at 1450, 70, and 32 kBytes per

second on a SUN Sparc station, DEC MicroVax II, and 20MHz 80286,

respectively. (Rivest, 1990)

B. SIGN AND CHECK

RSA Sign & Check are two programs which allow users to sign files

with non-forgeable digital signatures and to chec -i given signature's

validity. These signatures are based on the highly t ted RSA public key

cryptosystem which has withstood intensive mission critical commercial use

as well as fourteen years of vigorous challenge from the academic and

scientific communities.

C. VIRUS-SAFE

This product relies on three different methods for producing MACs:

" cyclic redundancy codes

" American National Standards Institute (ANSI) standard X9.9

" International Standards Organization (ISO) standard 8731-19

VIRUS SAFE allows several methods of operation to optimize security

versus performance. 3 The frequency and thoroughness of file examination

1 ANSI X9.9 describes a way of using DES to calculate a MAC which

is believed impossible to forge.

I ISO 8731-2 is currently used in the international banking community
to authenticate funds transfer.

The thoroughness of file examination which makes unauthorized
modification impossible to remain undetected takes time and decreases
productivit.

46

can be optionally set either during software installation or execution such

as:

" whether or not a file should be examined at all

" when to examine the file (at boot or execution time)

" how frequently to examine the file (every time, every other, etc)

" how thoroughly to examine the file (the ratio of MAC to CRC)

For example, someone using a word processor could opt for thorough

examination every 15th execution instead of each time it's used. A

programmer who infrequently uses a debugger may want to have it

examined every time it is used. The infrequent use means the productivity

impact is small, even if a thorough examination is performed. Other non

sensitive program and data files can be examined in a more routine manner,

such as, using a high speed algorithm when the computer is booted. This

approach could be up to ten times as fast, but, not offer the level of

security of a MAC. (Bosen, 1989)

On a 10 MHz AT, 100 kBytes can be authenticated in 3.2 seconds using

a hybrid DES and CRC algorithm. (Bosen, 1989)

47

VII. CONCLUSIONS AND RECOMMENDATIONS

Earlier, I asked, "How do we provide protection from viral attack?".

I concluded the appropriate question should be, "How do we prevent the

loading of infected software?". In retrospect, the first question allows us

to define the foundation for the paradigm to answer the second.

Serious protection from viral attack should be implemented as a three-

fold program:

* user training

* virus detection and removal

* software authentication

The program, however, is best executed in two phases:

* confidence building

* assurance building

A. CONFIDENCE BUILDING

These measures instill confidence in the user and organization that

computer viruses are not omnipotent programs written by omniscient

programmers. Instead, they are damaging, but common, nuisances which can

be recognized and defeated with a little effort and understanding.

Confidence building measures would entail the first two-thirds of the three

step program:

48

" user training

" virus detection and removal

1. User Training

A solid foundation for further anti-viral efforts must be laid by

training computer users in two areas:

. basic precautions

. viral recognition

The basic precautions will provide good user practices to reduce

the impact of viral damage, slow infection spread, and, hopefully, eliminate

new infections. A user's ability to recognize viral symptoms, either by

suspicious activity or visual or audible cues is important. Recognition,

before the initiation of the damage sequence, will be damage and infection

limiting. Use of virus simulations will provide safe and realistic recognition

patterns.

2. Virus Detection and Removal

Once the user has developed sound prevention and identification

skills, active use of anti-viral products will help ensure a virus free

system. These products should be implemented in the following order:

* identification tools

. detection or prevention tools

The identification product will ensure all existing infections are

identified and removed. Then the virus detection or prevention product can

be installed to preclude new infections.

49

These measures should be used as follows:

• daily random checks of on-line software as a first line of defense
against viral infection

• periodic deliberate checks against an off-line protected baseline to
verify the random verification means

B. ASSURANCE BUILDING

While the above measures will provide a strong damage and infection

prevention program, additional means are available which could strengthen

prevention measures and cover "apses ' I in their use. These assurance

building measures should make use of the inherent security of digitally

signed software. This means, when preparing software procurement contract

specifications, organizations should require that vendors certify their

software is virus free and that it has been digitally signed using a

"approved" producti. 3

1. Software Authentication

Several acknowledged methods currently exist for simple and

inexpensive sof" are authenticplion:

I Realistically, most people will not write protect floppy disks or use

virus checkers religiously.

This could be done in conjunction with the National Institute of

Standard and Technology which is currently developing a standard digital
signaturt for non-repudiation. Likewise. vendors such as RSA provide
respected products and act as agent for establishing and maintaining the
unique digital sigi re applied by each software package sold.

U digita signature should be produced on the vendor's
developn nt syste . since it is assumed to be uninfected. This is not
unrealistc since infections of commercial programs to date have been
traced to the duplication hardware ind not the development system.

.30

• use of a public key type signature product such as Sign & Check

• use of a one-way hash functions such as MD4

. use of multi-function products such as VIRUS-SAFE

The relative advantages and disadvantages of these methods include:

• One-way hash functions do not require any information to be kept
secret. Public key systems require one key be kept secret.

. The public key system would not require creation of substantiating
documentation. The digital signature is either valid or not. If its not,
the software is not loaded. One-way hash funftions, however, require
that a su bstantial paper trail of software valid hash codes be
maintained. Conformity of the hash code generated upon software
receipt, with the approved hash code maintained in the valid hash
codes documentation, is then required prior to installation.

. The public key system is much simpler in application than the one-
way hash function method.

* Public key system licensing costs several hundred dollars per site.
The one-way hash function code is in the public domain.

• A multi-feature program could be used in the interim to validate
software while waiting for vendors to release digitally signed
software.

I In the form of the digital signature creation algorithm. This is kept

secret by the vendor.

This includes all versions and mini-releases.

For this work, I assume that NAVELEXSECCEN, the Navy's anti-virus
command, will create and maintain this paper trail. They will select the
Navy standard hash function, apply it to all mission support software in
Navy's inventory, and release a NAVELEXSECCEN NOTICE detailing the
software package, version, manufacturer, and hash code. As new software
is procured or updates received, NAVELEXSECCEN will update and reissue
their NOTICE. Of course, hashing for new software could be required by
the procurement contact to relieve NAVELEXSECCEN of all but the initial
effort.

51

C. THE BOTTOM LINE

A reliable anti-virus product must be robust enough to ensure its own

integrity, and sophisticated enough to check all executable files without

exception.

While evaluating schemes for detecting and preventing viral spread,

it is important to remember that viruses use the same system capabilities

available to users. Many products and precautions may be used to slow or

stop infection spread. Each, however, tends to reduce the computer's

utility. As long as we desire flexibility, viru will be able co exploit

legitimate system capabilities. As viral programmers become more

experienced and develop new techniques, distinguishing between legitimate

and viral activity will become an increasingly difficult problem.

This requires more stringent protection and verification schemes.

Their strength, however, should lie in the verification process and not in

protection or secrecy of the method. Since most, if not all, of the anti-viral

products available today have loop holes1 , we must shift our reliance from

these -oducts to a computationally secure methodology for absolute virus

free environments.

Since viral infection can be traced to the use of infected software',

the only efficient way to preclude infection is to prohibit the use of

tainted programs. The only trustworthy means of prohibition is to require

Whether it be software interrupt monitoring in the prevention

product, assumed clean baselines for the detection product, or known
signature byte strings for the identification product, viruses can exploit
the weaknesses of even the most sophisticated anti-viral program.

I While the current generation of microcomputer viruses live mostly
in executable images, this may not necessarily be true in the future.

52

that vendors cooperate with users in a program of software authentication

using digital signatures.

53

VIII. APPENDICES

A. EXAMPLES OF DOS VIRAL INFECTION IN THE US

11NFECTED SOFTWARE REPORTING LOCATION DATE VIRUS

Unlock tasterkey .,.nnedY Space Center Oct 89 Vienna

SARGON III Iceland Sep 89 Cascade (1704)

ASYST RTDENOOZ.EXE Fort Delvoir AUg 89 Jerusalem-B

Desktop Fractal Various Jan 90 Jerusalem (1813)
Design System

Census Bureau Government Printing Jan 90 Jerusalem-B
1988 Election: City Office/US Census bureau
& County Data Dank

Northern Computers Iceland liar 90 Disk Killer

54

B. CHRONOLOGY OF A VIRUS AS TOLD BY IT'S AUTHOR

The author of the Dark Avenger virus has distributed it's source as

well as a program, DOCTOR, to remove it. DOCTOR contains the following:

DOCTOR QUICK! Virus Doctor for the Eddie Virus Ver 2.01 10-31-89
(c) 1988-89 Dark Avenger. All rights reserved. DOCTOR /? for help

It may be of interest to you to know that Eddie (aka "Dark Avenger") is the most widespread
virus in Bulgaria for the time being. However, I have information that Eddie is well-known
in USA, W. Germany and USSR too.

I started writing the virus in early September 1988. In those times there were no any viruses
written in Bulgaria, so I decided to write the first Bulgarian virus. There were some
different Eddie's versions:

VERSION 1.0, 31-OCT-1988

This version established the most important features of the Eddie virus. Staying resident
into high end of memory, it was infecting .COM and .EXE files, but only when executing them.
IN? 13 hadn't been handled in any way. This version was damaging infected files only, rather
than infected disks. Also, there weren't any messages in it (I still wasn't choosed a name
for it).

VERSION 1.1, 16-DIC-1988

In December I've decided to enhance the virus. This version could infect files during their
opening. for that reason, a read buffer was allocated in high end of memory, rather than
using DOS function 48h when needed. The disk was destroyed instead of the infected files.

VERSION 1.2, 19-DRC-1988
This added a new feature that causes (for example) compiled programs to be infected at once
if the virus is resident. Also, the "Eddie lives..." message was added (can you guess why
exactly "Eddie"?)

VERSION 1.31, 3-JAN-1989
This became the most common version of Eddie. A code was added to find the INT 13 row-vector
on many popular IT's and AT's. Also, other messages were added so its length would be exactly
1800 bytes. There was a subsequent, 1.32 version (19-JAN-1989), which added self-checksum and
other interesting features that was abandoned because it was extremely buggy. In early March
1989 version 1.31 was called into existence and started to live its own life to all
engineers' and other suckers' terror. And. the last

VERSION 1.4, 17-OCT-1989

This was a bugfix for version 1.31, and added som interesting new features. Support has been
added for DOS 2.x and DOS 4.x. For further information about this (the most terrible)
version, and to learn how to find out a program author by its code, or why virus-writers are
still not deed, contact 12r. Veselin bontchev (All Rights Reserved).

So, never may die! Zddie lives on and on and on... Up the irons!

55

C. KNOWN VIRUS INFECTION AND DAMAGE CHARACTERISTICS

The information below, provided by John McAfee at CVIA, details the

major characteristics and number of variants, in parenthesis, of the known

IBM PC compatible virus strains.

A Infects Fixed Disk Partition Table--+
9 Infects Fixed Disk Boot Sector----.
S Infects Floppy Diskette Boot ----. Directly or Indirectly:
7 Infects Overlay Files ----------
6 Infects EXI Files ----------- .---------- Affects Performance
5 Infects COt files ---------.. - +Corrupts Programs/Overlays
4 Infects COnwHAIJ.CO ..- : +--Corrupts File Linkages
3 Install Self in Newory+ :+---Corrupts Data Files
2 Self-Encryption-. ---- +Corrupts Boot Sector
1 STEALTH Techniques+ -.-- Formats Disk

Increase in
* , Infected Program

1 2 3 4 5 6 7 8 9 A 1 2 3 4 5 6 Size

Virus V V V V V V V V y v V y v V V V

AZUa, x x . x x . x X x . N/A
Lazy . x x x. x x 720
V-555 . x x x x • xx x . . 555
Phantom .x x x x x 2253
V-299 x x x • 299

Cancer x x x x 1480
1575/1591 . . x x x x . . . x x x . . . vary
USSR 492 x X X 492
USSR 1049 .. x x x... . x x x . . 1049
Skism . . x x x . . . x x . . . 1815
Holocaust x x x x xx X . 3784
Stone-90 . x x x x 961
903 x x x 903
Dir-Vir x x X...... .. x x . x . . 691
Hybrid . . . XX....... x x x . . . 1306
IKV528 x 528
Iraqi Warrior . . . X x • x x . • 777
Little Pieces x . xx. x x 1374
Saddam x x x • x X . 919
"onxla- x x x . . . 535
Plague X X Overwrites
Polish 217 . . . X X x x 217
Sentinel . . x Zzx . . . xx • . • 4625
Swiss 143 x x x . 143
USSA-311 x x .. . 321
Voronezh z I Z x X . . . x x . x . . 1600
V-96 . . x x 961
US$-830 • . x x x 830
USSR-529 X . a x . . 529
USSR-518 x x x x. . . 516
USSR-2144 .x xx x . . . x x . 2144
USSR-1049 • x x..... x x . . . 1049
USSR 43) x X 575
Tiny-133 . . .x x. x x . . . 133
Sverdlov . .xx x . . . 1962
Label x x Overwrites
Kukaturbo . x x x Overwrites

56

Justice . x x x . . . 1242

Hymn x x x x x . . x x . x . 642

Happy Hew Year . .xxX . .xx.. . 1865

Destructor x x x x x . . x x 1150

Leapfrog Virus x ? x x x . x . 516

NGTU Virus (2) . x..... x x x 273

Nina x x x x x x 256

Lozinsky . . . x x x x x 1023

BeBe . x x x x x 1004
Best Wish . x x x x . . x x . x . 1024

Beeper 2) x . x x X x 492
Parity . . . x x x x x 441

Trust Me I x x x x x x 417

USSR-948 x , .x xx x x x 948
USSR-711 X x x 711

USSR-707 x xx x x 707
USSR-696 x .x x x 696

USSR-600 x X X x x 600
USSR-394 x x x x x 394
USSR-257 x x x x x 257

USSR-256 x x x. x x 256
Christmas Violator . . . 7 x x x x ????

Off Stealth x , x xx x . . . X x . 1689

Jeff . .x x x x x x 328

Bloody! . x . . . x . x x . . . X n/a

ZeroHunt x x . x x x .x . n/a
Music Bug (3) • X X. x. . . x n/a

Dot Killer x x x x 944

Father Christmas . . . X X X X . . . 1881

3445 xx x . x x. . . x xx x . . 3445

Mirror (2) . x . x. . . x x 928

Polish-2 . x xx. x x x . 512
Polish 217 . . . x x x x x . 217

Happy Day . . . x x x x. . . 453

Monxla . . . x X.. 939

USSR x . . x. . . x x 575

Polimer . . .x x X . . 512

DataLock x x x 920

Carioca (2) x . xx x 951

529 x x x X x .x . 529
Spyr x . x x X. . . x 1181

Taiwan4 x x x x x . . x x • x 2576

Keypress (3) x x x x . . . x x .1 1232

Casper .x xx. x x x 1200

1605 . .xxxi . . x X x 1605

Violator (6) . • . x x x . x 1055

Blood-2 x. x x • 427

Wisconsin .x . x X x x X 825

Christas-J . . xxx... x x 600

Austria (3) Overwrites

Leprosy-B . . . S x x Overwrites

Whale (3) x x X x z x x . . x x x x . 9216
Invader (4) 1 z X • x x I x X x x X 4096
Scott's Valley • 2 . x x X . . . x X x . 2133

Anarkia (2) •.x x I . . xx . 1813

Black Handay (2) x x X X x . . x X x x 1055
Nomenclature (4) x x x x . . x I . 1024

Anthrax - boot (2) x x x x n/a
Anthrax - File (4) X z X x X . z 1206

651 Z . It x X 651

Paris . . . x x • . . . X X I 1 4909

Leprosy (5) .z X x x Overwrites
Mardi Bros. (3) x • x . . . x n/a

1253- Boot • . . . x x x x . n/a

1253 CON x x x X 1253

AirCop (3)x. . X , . . . x n/a

400 (5) . x x vary
Pl(6) x x X xx•. X vary

57

Ontario .x x x x x . . x x . x • vary

1226 (3) x x x x x x . x x . x • 1226

V2100 (2) . . x x . . . x x x x . 2100

Plastique (9) . x x x x x . . x x , . . 3012

Wo ian (2) . x x x x . . . x x 2064

Doom Z x . x x. . x x x x 2504
Flip (4) x x x x x x . . . x x x x . 2343
Fellowship (3) . .. * x . . . x x x x . 1022

Flash . x x x x . . . x x x x . 688

1008 x x x x x x x x • 1008
Stoned-lI . x . . x . x x . x . x n/a

Taiwan3 .x x x x x . x x x x . 2905
Armagedon (3) .x x x x x 1079
1381 x x . . x x 1381

Tiny (13) . x x x x 163

Subliminal (3) x x x x x. . . . 1496
Sorry x x x x x 731

RedX 2)x x x x 796

1024 (2) x x x x x 1024
Joshi (4) x x. . .. xxx x. • x x n/a
flicrobes .x. . . xx x . x x n/a

Print Screen 12) x x x . x . • x x n/a

Form (2) x .x . . . x x x. n/a
July 13th x . . . x . x x x x 1201

5120 (3 . . . x x x x . x x x x • 5120

Victor (2) x x x x x . . x x x 2458
JoJo 13) . x x x x 1701

W-13 (4} x x 532
Slow (5) • x x x x x . . x x x . . . 1721

Frere Jacques • . x • x x x . . x x 1811

Liberty (2) . . x x x x x . . . x x . I . . 2862

rish-6 (2) x x x x x x x. . x x x . 3584
Shake . x .x x x 476
turphy .xx x x x x . . . x x 1277
V800 (31 x x X x x x x .. . none
Kennedy (3) x x. x x 308
8 Tune/1971 (2) • . I I .• . . x x 1971

Yankee-2 .. z . . . x x 1961

June 16th . . x x..... xxx x 1726
XAI I . . x x x x x 1539
1392 . • x .. .x. • • ... 1392
1210 . x xxx... 1210
1720 (3) . .x x .. . x x x .x 1720

Saturday 14th (3) . . x I . . . x • x . x 685
K.-ea (4) •x. n/a
v mis 15) x x074
I .r x . . x x x.x. 3880
S amno 3) . • I. ... 2000
.d0O (3) x x x x I . . . x x . . . 2000

1559 • x x x xx.. . 1554
512 (5) • I x x x • none

UV (2) I x x x . . .x. n/a
Joker X x x . .
Icelandic-3 . .. x I.... 853
Virus-lOl . z x x ,xx 2560
1260 (3) x x 1260

Perfume (2) x x 765

Taiwan (3) x x 708
Chmos I . .• z X n/a
Virus-" zO x.... 857
Oropax (5) 1 x x x 2773
4096 (4) x . x x x I x . . . x x x x . . 4096

Devil's Dance (2) . . • x •x • . 941
Anatrad (5) x x 947

Payday (2) . x . x x x . . . x . .. 1808

Datacrime 11-P . x. x x x x 1917

Sylvia/Holland x 1332

Do-Nothing x.... 608

58

Sunday (4) x . x x x . . x x 1636

Lisbon (2) x x 648
Typo/Fimble x x x 867
Dbase . x . x x x .x . . 1364
Ghost Boot . x x x . X. . . x . n/a

Ghost COM x x . x. 2351

New Jerusalem . x .x x x . x x 1808

Alabama (3) . x .. xx x x . . . 1560

Yank Doodle (6) . x , x x . . x x 2885
2930 • x .x X x 2930

Ashar x x n/a

AIDS (4) x Overwrites
Disk Killer (4) , x x x . x x . x x x n/a

1536/Zero ug x . x x x 1536
"VIXI . x , . x . . . x x 1618

Dark Avenger (4) , x x x x . . . X x . . . 1300
3551/Svslock x . . x x x . x . • 3551
VACSINA (5) , x . x x x . . x x . . 1206

Ohio . . I...... x n/a

Typo Boot , x x x x . x n/a

Swap Boot . .x x n/a
Datacrime-2 (2) x . . x x x . . x 1514
Icelandic I1 . x . x. . . x x 661

Pentagon .x . . . x n/a

Traceback (3) . . x . x x. . . . x . .. 3066
Datacrime-B . x . . x...... . x . . .x 1168
Icelandic (2) . . x . . . x x 642

Saratoga x .x x x 632
405 x Overwrites

1704 Format x x .x X..... x . . x 1704
Fu Manchu (4) . x. x I x x x . x . 2086

Datacrime (2) x . .xx . . x 1280
1701/Cascade x x x x x 1701
CASCADE-B (9) x x . x x x 1704
Stoned (5) . x . . x x x . x . x . n/a
1704/CASCADE. x x . x x x 1704

Ping Pong-B (2) . . x. . . x x x . . x . n/a
Den Zuk 3) .x x x • . . x n/a
Ping Pong (5) .. x x x ..x n/a
Vienna-B x x 648

Lehigh . . x x x . . x Overwrites
Vienna/648 (23) x x 648

Jerusalem-I . .x. x x x . . .x x 1808

Alameda (2) . .x x n/a

Friday 13th CO .. . x x 512

Jerusalem (17) . . x . x x x 1808
SURIV03 . .x. x x . . x

SURrV02 x x 1488
SURIV01 x x x x 897
Brain (3) x x n/a

Total 9nown Viruse - 481

LIGIND:

Size Increase:
R/A - Virus does not attach to files.
None - Virus does not change size (attaches to file end)
Overwite. - Virus overwrites beginning of file, no size change
All Others - Length in bytes a file will increase when infected.

Characteristics:
x - Tea

- No

59

D. ANTI-VIRAL PRODUCT MINIMUM CAPABILITIES LIST

The minimum capabilities in the sections below are recommended by

John McAfee at CVIA. They can be used to provide a rough cut on

prospective anti-viral products. Acceptable products should then be

evaluated using the testing criteria in Appendix E.

1. Infection Prevention Products

" Differentiate between activities initiated by the user and activities carried out
autonomously by programs. Users may delete or update program files or operating system
segments. An application program, on the other hand, should not, under normal
circumstances, modify another application program, an operating system program, or the
system's boot sector. This is indicative of viral activity;

" Provide few false positives, or false alarms. Users become habituated to frequent false
alarms and tend to overlook a valid virus warning when it does occur;

* Run with other memory resident programs. Infection prevention programs are all memory
resident and they modify a large number of software interrupts. This gives such
programs a propensity for crashing or hanging the system when running concurrently with
other memory resident programs;

" Protect against modifications to all executable data, including: the system's boot
sector, device drivers, operating system modules, including hidden file programs, and
all application programs;

" Provide an easily accessible enable/disable switch. Many instances will occur where the
checking process will need to be temporarily suspended;

" Provide the ability to selectively protect or ignore specific programs or specific
areas of the system. This will reduce the number of false alarms when running programs
which violate the "rules" imposed by the product;

" Provide the ability to freeze virus activity when it is detected, and pre- -nt the
illegal access from continuing. This is mandatory to prevent the virus from ecting
the system;

" Run without noticeably degrading system performance. Mlemory resident programs have a

tendency to increase system overhead and thus slow down the system. A well designed
product should cause no more than a 5t degradation in system performance;

" Monitor and protect all attached read/write devices. All attached devices that can be
written to are potential virus targets. The prevention product should protect all such
devices; and,

" Selectively prevent interrupt level I/0 and non-standard calls for I/O service
(interrupt level requests). Since doing so increases the false alarm rate, the user
should have the choice of allowing or disallowing such calls.

2. Infection Detection Products

• Detect characteristic viral modifications to executable data, including: the system's
boot sector, system device drivers, operating system modules, including hidden file
programs, and all application programs;

60

" Allow the user to selectively exclude specific programs or areas of storage from

checking. This will allow programs or directories that undergo frequent change to avoid

causing error messages;

" Perform global check functions Ln a timely fashion. If the check function is executed
at boot time, for example, it should add no more than 10 seconds to the boot sequence
for each 50 programs on the disk that must be checked;

" Provide automatic checking. The check function should execute at least each time the
system is powered ,n or re-booted. Some systems provide a clock function so that the
system can be chec&ed automatically at user specified time intervals;

* Stop the system, provide a visual and audible warning, and wait for user directions if
a potential virus is detected; and,

" Display the names of all programs or system areas that have become infected.

3. Infection Identification Products

I Identify and remove multiple virus strains;

" Provide information to allow the user to determine the diagnosis accuracy. Modified
viruses can sometimes only be detected by cross referencing many different
characteristics. The product should provide the degree of certainty, or other
information that can be used to determine a course of action, for any questionable
virus;

" Identify and report infected system areas and the extent of infection;

• Inform the user of the anticipated degree of success for removal. Depending on the
length of time since infection, removal may or may not be possible. The product should

inform the user of possible options including automatic removal or erasure of the

affected system element;

" Scan and remove infection from all attached devices including floppies, fixed and

removable hard disks, and tape devices;

" Automatically scan all subdirectories;

" Flag all system areas where removal was incomplete. These areas must be manually dealt

with after the program finishes; and,

" Prevent self infection during the identification and removal process. An infected
identification product will run the risk of infecting every system on which it is used.

61

E. ANTI-VIRAL PRODUCT EVALUATION PROCEDURES

The test procedures in the sections below are recommended by John

McAfee at CVIA. While not scientifically rigid, they will provide additional

performance information not otherwise obtainable. Any product that

performs well in testing will provide some degree of real protection.

1. Infection Prevention Products

* Install the antiviral product;

* Test the product's ability to protect general executable programs from being modified.
Create a temporary subdirectory and copy your word processor into it. Create two output
text files named TEST, one with a EXX extension and the other with a .COM extension.
Then attempt to update the file using the word processor. The antiviral program should
flag both the creation and the update as a potential infection. Repeat these steps for
the system files (IBMBIO.COM, IBHDOS.COM, and COtlMAND.COM) as well as all device
drivers. Repeat each of these steps using a floppy diskette as the output device,
instead of the hard disk subdirectory. The same results should occur.

Test the product's ability to prevent interrupt level I/O. First copy the FORMAT
routine to a file namec TEST.COM. Run TEST and format a floppy diskette in the A or 3
drive. The antiviral program should prevent the format and flag the attempt.

Test the use of operating system commands. User commands are frequently, and
er.toneously, flagged by antiviral products when they instigate operations that mimic
virus activities. Using COPY, DELETE and RENAME commands, copy an executable program
into a different directory, rename it to another EgI or CON file name, and then delete
it. None of the three operations should be flagged by the antiviral program.

Verify that the above functions would be stopped if performed by a program, rather than
by the user. Using any application utility program that has '-nv, rename and delete
functions , repeat the above series of steps. The antiviral pr, z should prevent and
flag all three attempts as potential viral activities.

Test self modification. Many programs modify their own executable modules a some
point. The antiviral program should not flag or prevent this. To test this, coj. your
word processor executable module to a backup file. Then run the word processor, create
a dummy document, and then save it to the name of the executable word processor module.
The antiviral program should allow the modification. After this test, copy the saved
version of the program back to its original name.

Test for detection of boot sector modification. Using any utility that allows reading
and writing the boot sector, read the boot sector and write down the contents of the
first byte, Change the first byte to 00 and a--capt to write the sector back to disk.
The product should prevent the attempt. If - - product fails, replace the original
contents of the first byte and re-write the boot sector. The re-write should be
performed prior to shutting down or re-booting the system.

Test for memory residence. Many viruses modify the original structure of programs so
that they remain memory resident after they terminate. The antiviral product should
detect any attempt to remain resident. To test this feature, merely take any normally
memory resident program, such as SIDEKICK or CACHE, and rename it to the file TEST.CON
(or .E XE, depending on the program). Run TEST. The product should catch the program and
display a warning message.

62

2. Infection Detection Products

Test for detection of boot sector replacement. Using a disk utility, create a safe
unique boot sector by blanking out the "Boot Failure" message. Then install the
detection product you wish to test. Next, replace the entire boot sector using the SYS
coa nd. Then execute the check function of the product you are testing. The product
should warn that the new boot sector is a replacement.

Test for detection of boot modification. Next, re-install the detection product. Then

modify the boot sector randomly using the disk utility, Run the check routine, The
product should warn that the boot sector has been modified. (When finished with this
step, perform the SYS command again, or use the disk utility to return the boot sector
to its original state).

Test for detection of program deletion. Copy a number of CO1 and EXE files to a
temporary directory and then delete the originals. Run the detection check function.
The product should identify each of the missing programs.

Test for detection of program modification. Copy the programs back from the temporary

directory to their original directories. Using your disk utility, modify the first byte
of each of the COM programs. Modify the entire first 500 bytes of the EXE programs.
Run the check program. Each modification should be detected. At this point you should
replace each of the modified programs from the original programs stored in the
temporary directory,

" Test for detection of program replacement. Replace an application program with the
original from the distribution diskette. Then modify the program as above. The check
function should still catch the modification.

" Test for detection of system modification. Using a disk utility, copy IBl(IO.CO14,
IBMDOS.CON, and COMNAND.COK to backup files. Randomly modify each of the original
files, using the disk utility, by changing only one byte in each. Run the check routine
to determine that the modifications have been detected. Perform this step multiple
times with different modifications.

3. Infection Identification Products

" The first steps are to isolate the infected system from all others, and to acquire
clean, original copies of the infected programs. Make working copies of these
uninfected programs onto separate floppy diskettes, one sample program per diskette.

" Insert each floppy in turn into the infected system and run each sample program. This,
in most cases, will cause the diskette, or the program, to become infected.

" Using a disk utility, do a binary compare of the infected diskette to the backup copy.
If an infection has occurred, the diskettes will differ. Separate all working copy
diskettes that have been modified by the virus and label them as infected.

" How run the identification program against each of the infected floppies. Do this on
a clean, uninfected system. The program should identify the infection on each diskette.
Next cause the program to attempt removal. Run each floppy in turn through the removal
cyole. The program should remove all of the infections.

" To test that the removal worked, take the infected (and now hopefully disinfected)
diskettes and again do a binary compare against the original backup diskettes. There

should be no dlscrpmncy.

" If the program has passed the above tests, it is clearly able to identify and, at least
in test disks, remove the infection. At this point you should test its operation on the
infected system. To do this, first make a backup copy of the product. Then load the
identification program into the infected system and begin the ident~fication and
disinfection process.

63

*on completion of the operation, perform a disk compare of the working disk against th.'
original product disk. There should be no differences.

64

F. ANTI-VIRAL SOFTWARE

The following anti-viral products are available commercially:

1. Infection Prevention Systems

Product Vendor Phone

ACE System Security Dynamics (617) 547-7820

Data Physician Digital Dispatch (612) 571-7400
1580 Rice Creek Road

Minneapolis, MN 55432
Disk Defender Director Technologies (312) 491-2334

Flu-shot+ Software Concepts Design (212) 889 6438

594 Third Avenue
New York, NY 10016

FShield McAfee Associates (408) 988-3832

4423 Cheeney Street
Santa Clara, CA 95054

r-PROT Box 7180
IS-127 Reykjavik

Iceland
Nurton AnLiVirus 10201 Torre Avenue (800) 343-4714

Cupertino, CA 95014
VirALARM 2000 Lasertrieve (201) 906-1901

395 Main Street
Metuchen, NJ 08840

Virus Implant Protector Leemah Datacom Security (415) 786-0790
3948 Trust Way

Hayward, CA 94545

2. Infection Detection Systems

Product Vendor Phone

Sentry McAfee AsSOCiates (408) 988 3832
Tracer McAfee Associates (408) 988-3832

Vaccinate Sophco (800) 922-3001
P.O. Box 7430

Boulder, CO 80306
Virus-Pro International Security (212) 288-3101

Technologies
Virus Safe Enigma Logic Irc. (415) 827-5707

2151 Salvio Strcet, 0301

Concord, CA 94565 USA

3. Infection Identification Systems

Product Vendor Phone

Detect McAfee Associates (408) 988-3832

Scan Virus IBM (800) 426-2468
Viruscan McAfee Associates (408) 988-3832
V-Finder WallyWare (408) 275-6358

65

G. MD4 LISTING

/5

E md4.c -- Implementation of MD4 Message Digest Algorithm ..

ES Updated: 2/16/90 by Ronald L. Rivest **

' (C) 1990 RSA Data Security, Inc.

To use MD4:

-- Include md4.h in your program
• E -- Declare KDstruct M1D to hold the state of the digest computation.

-- Initialize dD using ADbegin(&ND)

• * -- For each full block (64 bytes) X you wish to process, call
NlDupdate(&X1DX,512)

(512 is the number of bits in a full block.)

55= -- For the last block (less than 64 bytes) you wish to process,
ES fDupdate(&MD,X,n)
S * where n is the number of bits in the partial block. A partial

block terminates the computation, so every ND computation should
S terminate by processing a partial block, even if it has n z 0.

• E -- Message digest is available in MD.buffer[O] ... MD.buffer[31.
S * (Least-significant byte of each word should be output first.)

Es -- You can print out the digest using MDprint(&MD)
S/

/E Implementation notes:

' This implementation assumes that ints are 32-bit quantities.
m If the machine stores the least-significant byte of an int in the

l least-addressed byte (VAX and 8086), then LOWDYTEFIRST should be
S. set to TRUE. Otherwise (eg., SUNS), LOWBYTEFIRST should be set to

fALSE. Note that on machines with LOWDYTEFIRST FALSE the routine

E ?Dupdate has a side-effect on its input array (the order of bytes

S in each word are reversed). If undesired, a MDreverse(X) call can
ES reverse the bytes of X back into order after each call to NDupdate.
S/

$define TRUE 1
*define FALSE 0
#define LOWBTTEFIRST TRUE

/* Compile-time includes
S/

*include (stdio.h>
$include "md4.h"

/3 Compile-time declarations of 1D4 ''magic constants''.
S/

#define 10 0z67452301 /S Initial values for MD buffer */

$define II Ozefcdab*
*define 12 OzJ9badcte

*define 13 0z10325476
#define C2 013240474631 /* round 2 constant = sqrt(2) in octal /

#define C3 01566436541 /a round 3 constant = sqrt(3) in octal 5/

/* C2 and C3 are from Knuth, The Art of Programing, Volume 2
EU (Seminumerical Algorithms), Second Edition (1981), Addison-Wesley.

m Table 2, page 660.
5/

$define fsl 3 /* round I shift amounts 5/

#define fs2 7

*define fs3 It

66

$define fs4 19
*define gsl 3 /5 round 2 shift amounts 9/
#define gs2 5
*define qs3 9
*define gs4 13
define hsl 3 / round 3 shift amounts 5

#define hs2 9
*define hs3 11
#define hs4 15

/* Compile-time macro declarations for I1D4.
** Note: The ''rot'' operator uses the variable ''tap''.

SIt assumes tmp is declared as unsigned int, so that the
~operator will shift in zeros rather than extending the sign bit.

#define f(X,Y,Z) i(X&Y) U(X)&Z))
#define g(X,Y,Zl i(X&Y) (X&Z) (Y&Z))
*define h(X,Y,Z) (XYZ)
#define rot(X,S) (tmp=X,(tMp<<S) (tapMt32-S)fl
#define ff(A,B,C,D,i,s) A =rotiHA + f(B,C,D) + X~ij),s)
#define gg9(A,B,C,D.i,s) A rott(A + g(B,C,D) - M~i] + C2),s)
*define hhtA,B,C,D,i,s) A rrotfHA * h(B,C,D) + X[i] + C3),s)

/* '1Dprint(41Dp?
SPrint message digest buffer 41Dp as 32 hexadecimal digits.
"Order is low-order by-te of buffer[0J to high-order byte of buffer[3].
"Each byte is printed with high-order hexadecimal digit first.
5This is a user-callable routine.

void
I~print (lDp)
.lDptr ?tDp;

(mt i,j;
for (i=0;i<4;i++)

for (j=0;j<32;j=j+S)
printf('%02x",(,Inp->bufferfi]>'j) & OxFF);

/5 Dbegin('Dp)
SInitialize message digest buffer iMp.
5~This is a user-callable routine.

void
4Dbegin~lp)
lnptr 1TDp;
(mt i,
lDp-)bufferl0] 10;
iDp-)bufferfl) 11;
iDp-)bufferIZ] t12;
lDp->buffer[3] 13;
for (is0;i<8;i+.) fDp-)count~i] 0;
FDp->done =0;

/* MDreverse(X)
5Reverse the byte-ordering of every mnt in X.
5Aaause X is an array of 16 ints.
SThe nocro rovz rovermw the byte-ordering of the next word of X.

*define revs (t (*X (< 16) :(*X >) 16); '

*x+=((t &ox??oor?00) >> 8) :((t & oxooFofiF (< s); I
lDreversel X)
unsigned long int *X;

register unsigned long int t;
revx; revx; revx; revs; revx; revx; revx; revx;
revx; revx; revx; revx; revs, revx; revx; revx;

67

/2 !lDblock(ltDp,X)
as Update message digest buffer 4Dp->buffer using 16-word data block X.
** Assumes all 16 words of X are full of data.

Does not update l' p-'count.
SThis routine is not user-callable.

static void

4Dptr 'lDp;
uns~igned long mnt KX;

register unsigned long int tMp, A, 8, C, D;
*it LOWSYTEFrRST z:FALSE

IDreverselX);
#end if

A Dp->buffer[O);
B MDp->buffer[l];
C 'I- buffer(21;
0 MDp->buffer[3];
/a Update the message digest buffer 2

ff(A ,B *C *D ,0 ,fsll; /2 Round 1 2

ff(D ,A ,B ,C 1 fs2);
ff(C ,D A B 2 ,fs3);

ff(1 C ,D ,A ,3 ,fs4);

ff(A ,B ,C D 4 ,s)

ff(D ,A ,B ,C ,5 ,fs2);

ff(C *D ,A 8 6 ,fs3);

ff18 C *D A ,7 ,fs4);

ff(A *B ,C D ,8 ,s)

ff(0 A , 8 C ,9 *fs2);

ff(C D A *B ,10 ,fs3);

ff18 C D A ,11 ,f94);

ff(A 8 C *D ,12 ,fal);

ff(D ,A ,B ,C ,13 ,f92);

fflC , 0 A ,B ,14 ,fs3);

ff18 C ,D A ,15 ,fs4);

qg(A ,B ,C ,D ,0 ,gal); /* Round 2 2

qg(D ,A ,B ,C ,4 ,gs2);

qggC ,D ,A ,B ,8 ,ga3);

gg(B ,C *D ,A ,12 ,gs4);

gg(A ,B ,C D I ,gal);

gg(D A 8 C ,5 S82a);
Sg(C D A , B 9 ,ga3);

gg(B ,C D A ,13 ,gs4);

gg(A 9 C D 2 *gal);

gg(D ,A ,B ,C ,6 ,g92);

gg(C D A , 8 10 ,g93);

gg(9 C D A ,14 *g94);

ggfA B5 C ,D ,3 ,gal);

iglO A ,D C *7 , ga2);
gg(C D A & 11 ,z)

"g(D C ,D *A 15S gs4);
hh(A 9 C 0 0 *hal); /* Round 3 2

hh(D *A 9 C *8 W a);
hh(C D A 9 4 ,h93);

hh(D C D A *12 ,ha4);

hh(A , 2 C D 2 ,hal);

hh(D ,A 9 C *10 W a);
hh(C 0 A 9 6 ,Wa);

hh(B *C D A ,14 *ha4);

hh(A 8 C *D ,I *hal);

hhfD ,A 9 C 9 W a);
hh(C D A *3 *5 *ha3);

hh(B ,C D A ,13 *h94),,

hh(A 9 C *D *3 *hal);

hh(D *A *B *C *11 ,haZ);

hh(C ,D *A B 7 W a);

68

hhlB , C , D , A , 15 . hs4);
4Dp->buffer[O] +z A;
.Dp->buffer(lI 4: B;
IDp-)buffer[(2 ' C;
MDp->buffer[3] + D;

/* 1DupdaterDp,X,count)
Input: 4Dp -- an lDptr

YL -- a pinter to an array of unsigned characters.
count -- the number of bits of X to use.

(if not multiple of 5, uses high bits of last h,'e.)
Update 'lDp using the number of bits of X given bv count.

*"This is the basic input routine for an .4D4 user.
' The routine completes the ID computation when count < 512, so

every *11D computation should end with one call to MDupdate with a
K* count less than 312. A call with count 0 will be ignored if the

'ID has already been terminated (done!zO), so an extra call with count
. 0 can be given as a 'courtesy close' to force termination if desired.

void

'Mupdate(Dp,X,countI
"Dptr IDp;
unsigned char 9X;
unsigned int count;

unsigned long int i, tmp, bit, byte, mask;
unsigned char X(641;
unsigned char -p;
/* return with no error if this is a courtesy close with count
A* zero and KDp->done is true.
C'

if (count :z 0 && 4Dp->done) return;
/a check to see if ID is already done and report error /
if (eDp->done) (printf("\nError: IDupdate ID already done."); return; 1
/* Add count to MDp-)count Cl
tmp z count;
p : 4Dp->count;

while (tmp)

{ top +: *p;
*p++ top;

top tap >) 9;

/ Process data a/
if (count == 512)

/ Full block of data to handle 1
4Dblock(VDp,(unsigned long int *)X);

}
else if (count > 512) (2 Check for count too large Cf

{ printf
i"\nlrror: rDupdate called with illegal count value d.",count);

return;
I

else /* partial block -- must be last block so finish up =/
(/a rind out how may bytes and residual bits there are V
byte count)> 3;
bit count & 7;
/2 Copy X into XX since we need to modify it C/

for (i=O;i(=byte;i.4) XX[i] = Mil;

for (i~byteml;i<64;i++) XX(ij = 0;
/] Add padding '1' bit and low-order zeros in last byte S/

mask = 1 <((7 - bit);
XXfbytej = (XX[bytel ; mask) & -f mask - 1);
/* If room for bit count, finish up with this block C/

if (byte <: 55)
f for (i:0;i<8;i+,) XX[564i] = MDp-)count[i];
MDblock(Dp,iunsigned long int *)XX);

else /- need to do two blocks to finish up *1

69

K DblockODP,(uflsigfled long int *)XX);

for (i=O;i456;i++) JXX[i] 0
for (i=O;i(S8i4+) XX[56+i] = IDp->countliJ;

N1~block(Wp, (unlsigne~d long int 'IX.X),

/* Set flag saying we're done with AD computation '
4Dp->done I

End of md4.c

70

IX. LIST OF REFERENCES

Bosen, Bob, "Use of Message Authentication Code (NIAC) Technology in the
Detection of Computer Viruses", Enigma Logic, 1989, unpublished.

Chess. David, IBM, VIRUS-L Digest Tuesday, 8 May 1990 Volume 3 : Issue
90, moderated by Kenneth R. van Wyk.

Cohen, Fred, "Computer Viruses: Theory and Experiments", Computer
Security: A Global Challenge, J.H. Finch and E.G. Dougall (eds), Elsevier
Science Publishers, B.V. North Holland, 1984.

Davida, George, Desmedt, Yvo, and Matt, Brian, "Defending Systems Against
Viruses Through Cryptographic Authentication", Proceedings 1989 IEEE
Computer Society Symposium on Security and Privacy, IEEE Computer
Society Press, Washington, DC, 1989.

Denning, Dorthy, "Cryptography and Data Security", Addison-Wesley
Publishing Company, 1982.

McAfee, John, McAfee Associates, Viral Characteristics List V74, 1991.

McAfee, John, McAfee Associates, Implementing Anti-viral Programs, 1989.

McDonald, Chris, information Systems Management Specialist, ASQNC-TWS-RA,
VIRUS-L Digest Tuesday, 24 Apr 1990 Volume 3 : Issue 80, moderated by
Kenneth R. van Wyk.

Merkle, Ralph, "A Fast Software One Way Hash Function", Xerox
Corporation, 1989, unpublished.

Merkle, Ralph, "A Certified Digital Signature", Crypto 1989.

Mildner, John, Code 043, Naval Electronic Systems Security Engineering
Center, Washington, DC, telephone conversation, 12 March 1991.

Rivest, Ron, RSA Data Security, February 1990, private communication.

Seberry, Jennifer and Pieprzyk, Josef, "Cryptography: An Introduction To
Computer Security", Prentice-Hall, Australia, 1989.

Skulason, Fridrik, Technical Editor, Virus Bulletin (UK), University of
Iceland, VIRUS-L Digest Friday, 9 Feb 1990 Volume 3 : Issue 35,
moderated by Kenneth R. van Wyk.

71

Skulason, Fridrik, Technical Editor of the Virus Bulletin (UK), University
of Iceland, VIRUS-L Digest Tuesday, 27 Mar 1990 Volume 3 Issue 64,
moderated by Kenneth R. van Wyk.

Skulason, Fridrik, Technical Editor of the Virus Bulletin (UK), University
of Iceland, VIRUS-L Digest Wednesday, 9 May 1990 Volume 3 Issue 91,
moderated by Kenneth R. van Wyk.

Skulason, Fridrik, Technical Editor of the Virus Bulletin (UK), University
of Iceland, as translated by Vesselin Bontchev, VIRUS-L Digest Friday, 18
May 1990 Volume 3 : Issue 97, moderated by Kenneth R. van Wyk.

Skulason, Fridrik, Technical Editor of the Virus Bulletin (UK), University
of Iceland, VIRUS-L Digest Monday 7 May 1990 Volume 3 Issue 89,
moderated by Kenneth R. van Wyk.

Skulason, Fridrik, Technical Editor of the Virus Bulletin (UK), University
of Iceland, VIRUS-L Digest Monday, 29 Jan 1990 Volume 3 Issue 24,
moderated by Kenneth R. van Wyk.

Spafford, Gene, Software Engineering Center, Purdue University, VIRUS-L
Digest Friday, 12 Jan 1990 Volume 3 : Issue 10, moderated by Kenneth R.
van Wyk.

Swimmer, Morton, Virus Test Center, University of Hamburg, VIRUS-L Digest
Monday, 21 May 1990 Volume 3 : Issue 99, moderated by Kenneth R. van
Wyk.

Tannenbaum, Andrew S., "Computer Networks", Prentice-Hall, Englewood
Cliffs, New Jersey, 1989.

72

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Commanding Officer 3
Naval Electronic Systems Security Engineering Center
Code 043
3801 Nebraska Ave NW
Washington, DC 20393-5270

3. Dr. Norman F. Schneidewind 3
Code AS-SS
Naval Postgraduate School
Monterey, California 93943-5002

4. Dr. Tung X. Bui
Code AS-TN
Navel Postgraduate School
Monterey, California 93943-5002

5. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

73

